State of Missouri regional COVID-19 hospitalized cases model

July 8th, 2020
Multiple data points inform Missouri’s COVID-19 response

- Syndromic surveillance
- Healthcare system capacity (bed, PPE, and staff availability)
- Testing
- COVID-19 cases and deaths
- Economic and social impact
- Insights from U.S. states, nationally, and other countries
- Evidence from scientific literature
- Mathematical disease modelling
Our model estimates possible outcomes based on currently available information

<table>
<thead>
<tr>
<th>What does the model tell us</th>
<th>What does it not tell us</th>
</tr>
</thead>
<tbody>
<tr>
<td>Range of plausible outcomes based on our current knowledge of COVID-19 in Missouri</td>
<td>What will happen in the future</td>
</tr>
<tr>
<td>Approximate date and magnitude of peak/s based on current understanding of policy interventions and human behavior and assumptions about future interventions</td>
<td>Date and magnitude of peak/s if there are major changes in planned policy interventions and human behavior</td>
</tr>
<tr>
<td>Approximate estimate of effective transmission rate across a region</td>
<td>Exact transmission rate in all parts of a region – there may be areas of higher and lower transmission within the region</td>
</tr>
<tr>
<td>Projected hospitalizations for regions in MO with sufficient data, i.e. Kansas City Area, Central, St. Louis Area, Southeast and Southwest</td>
<td>Projected hospitalizations in regions where daily COVID-19 hospitalizations are fewer than 15 because insufficient cases</td>
</tr>
</tbody>
</table>

The ability to forecast depends on the quality and availability of data. For a new disease such as COVID-19, much remains uncertain.
Greater Kansas City area (Region A)

Overview
Population: 1,395,314
Cumulative cases: 5,688
Cumulative deaths: 92
7-day new cases: 791
Week-over-week % case increase: 16%

Reproductive rate
Pre-intervention: 2.80 ± 0.15
Today: 1.21 ± 0.08
Change from last week: ↑0.03

Projected COVID-19 hospitalizations

Source: State of MO, MHA, WUSTL analysis; USA Facts; US Census Bureau
Greater St. Louis area (Region C)

Overview
Population: 2,229,518
Cumulative cases: 11,404
Cumulative deaths: 853
7-day new cases: 815
Week-over-week % case increase: 8%

Reproductive rate
Pre-intervention: 3.39 ± 0.14
Today: 1.01 ± 0.08
Change from last week: ↓0.11

Source: State of MO, MHA, WUSTL analysis; USA Facts; US Census Bureau
Southwest / Springfield (Regions D,G, I)

Overview
Population: 1,221,847
Cumulative cases: 3,052
Cumulative deaths: 26
7-day new cases: 791
Week-over-week % case increase: 35%

Reproductive rate
Pre-intervention: 2.36 ± 0.16
Today: 1.25 ± 0.09
Change from last week: ↑0.15

Note: Due to low levels of hospitalized COVID-19 cases, modelling projections are highly sensitive to slight shifts in observed data and must be interpreted with extra caution.

Source: State of MO, MHA, WUSTL analysis; USA Facts; US Census Bureau
Southeast / Cape Girardeau (Region E)

Overview
Population: 363,478
Cumulative cases: 1,239
Cumulative deaths: 34
7-day new cases: 155
Week-over-week % case increase: 14%

Reproductive rate
Pre-intervention: 2.61 ± 0.15
Today: 1.31 ± 0.06
Change from last week: ↓0.03

Note: Due to low levels of hospitalized COVID-19 cases, modelling projections are highly sensitive to slight shifts in observed data and must be interpreted with extra caution.

Source: State of MO, MHA, WUSTL analysis; USA Facts; US Census Bureau
Central (Region F)

Overview
Population: 502,486
Cumulative cases: 944
Cumulative deaths: 8
7-day new cases: 149
Week-over-week % case increase: 19%

Reproductive rate
Pre-intervention: 2.30 ± 0.08
Today: 1.26 ± 0.13
Change from last week: $\uparrow0.18$

Projected COVID-19 hospitalizations

Note: Due to low levels of hospitalized COVID-19 cases, modelling projections are highly sensitive to slight shifts in observed data and must be interpreted with extra caution.
Source: State of MO, MHA, WUSTL analysis
Northwest (Region H)

Overview
Population: 234,361
Cumulative cases: 1,168
Cumulative deaths: 12
7-day new cases: 71
Week-over-week % case increase: 7%

Reproductive rate
Pre-intervention: 1.24 ± 0.08
Today: 0.59 ± 0.10
Change from last week: $\rightarrow 0.0$

Projected COVID-19 hospitalizations

Note: Due to low levels of hospitalized COVID-19 cases, modelling projections are highly sensitive to slight shifts in observed data and must be interpreted with extra caution.

Source: State of MO, MHA, WUSTL analysis
Missouri’s Regional COVID-19 Hospitalized Cases Model: Overview and Frequently Asked Questions

Model Overview

One of the many data analyses that inform Missouri’s COVID-19 response is a regional model of hospitalized COVID-19 cases that the State of Missouri developed in partnership with the Washington University in St. Louis and Kansas hospital associations.

Missouri’s model uses a standard SEIR (susceptible, exposed, infectious, removed) compartmental structure that is based upon a tool called LEMMA (Local Epidemiological Modelling for Management & Action), which was developed by experts from UMass Amherst, UC Berkeley, UCSF, and WUSTL. The model focuses on COVID-19 hospitalized cases to directly address the question of hospital capacity and provide a more accurate picture of COVID-19’s impact on the healthcare system.

Version 1.0, As of June 3, 2020

To help inform decisions at the regional and local level, each region is modeled separately using the state’s local data, including COVID-19 confirmed and suspected hospitalizations, population, policy interventions, and average hospital length of stay.

General FAQs

Why are regional models of COVID-19 important?

When new diseases such as COVID-19 emerge, there is much uncertainty about how best to control the epidemic. Decision makers must make the best possible decisions with the available information at hand.

Mathematical models are commonly used to make projections of how infectious diseases might impact key outcomes such as hospitalized cases or deaths. Today, there are many sophisticated models of COVID-19 that make point or national projections (e.g., Imperial College, Harvard, SEIMA). However, these generally do not incorporate key local or regional inputs, such as variations in local population demographics, healthcare systems, and current decisions around social distancing and other non-pharmaceutical interventions.

Regional models are critical to inform decisions in real time. Moreover, hospital capacity varies significantly by state and region, so regional hospitalizations are critical to assessing local impacts and informing policy decisions.

How does LEMMA help hospitals sense patients across programs?

LEemma uses a geographic methodology to analyze hospital and patient referral and EMS patterns, and helps hospitals sense patients across programs.

For example, the Missouri Highway Patrol Troop and Healthcare Advisory Group collaborates to create a cohort of COVID-19 patients (i.e., the Greater St. Louis Troop C) due to their engagement with the health care system.

Low levels of daily COVID-19 hospitalizations in the Northeast and Northwest regions limit the ability to generate projections for these regions. In particular, the numbers of hospitalized cases have been so low that
Regional COVID-19 transmission models help inform local policy, public health, and business decisions

- Mathematical models are commonly used to make projections of infectious disease epidemics (e.g., tuberculosis, HIV)
- Many sophisticated models on COVID-19 make global or national projections (e.g., Imperial College, Harvard, IHME)
- However, these generally do not incorporate critical local or regional inputs, such as:
 - Variations in local population size and age structure
 - Date and nature of social distancing and other policies
- Regional projections are important because:
 - Regional epidemics may differ markedly from the national average
 - Policy response occurs at state, county, and municipal levels
State of MO, WUSTL, and MHA have developed a regional model of hospitalized COVID-19 cases

- Standard SEIR model that combines universal characteristics of COVID-19 infection (e.g., transmission parameters) with local inputs to support regional decision making
 - Mathematical model developed by experts from UMass Amherst, UC Berkeley, UCSF, and WUSTL
 - Uses a statistical approach that adjusts underlying parameters as new data are observed

- Customized using the latest local data from Missouri’s emergency response regions, including:
 - COVID-19 positives and PUIs
 - Population and age structure
 - Policy interventions
 - Avg. hospital length of stay

- Projects COVID-19 hospitalized cases to directly address the question of hospital capacity and provide a more accurate picture on COVID-19’s impact on the healthcare system
Projections are made for each Emergency Response region with sufficient data

- Low levels of daily COVID-19 hospitalizations in the Northeast and Northwest regions limit the ability to generate projections for these regions
 - Northeast: Average of 4 daily confirmed or suspected COVID hospitalizations from 3/26 to 6/1
 - Northwest: Average of 17 daily confirmed or suspected COVID hospitalizations from 3/26 to 6/1

- Projections are available for all other regions