Missouri Prediabetes Media Campaign Evaluation

Prepared by Dr. Ze Wang (WangZe@missouri.edu)
Natalie J. Hampton (HamptonN@missouri.edu)
University of Missouri

August 2018

TABLE OF CONTENTS

INTRODUCTION...2
CAMPAIGN DESCRIPTION..3
DATA COLLECTION..8
PARTICIPANT DEMOGRAPHICS..9
AWARENESS AND KNOWLEDGE ...13
SOURCES OF INFORMATION...20
CHANGES IN BEHAVIOR OR THINKING..24
DIFFERENTIATED CAMPAIGN EFFECTS BY SUBGROUPS...25
CONCLUSION..36
APPENDIX..40
INTRODUCTION

The National Diabetes Prevention Program (DPP) is an approved, effective intervention program by the Centers for Disease Control and Prevention (CDC) for preventing diabetes. The Diabetes Prevention Recognition Program (DPRP) is a part of the DPP that certifies programs across the nation for meeting the DPP objectives. The National DPP uses the social cognitive theory to improve diet, physical activity, problem-solving and coping skills with the help of small groups and lifestyle coaching. The program consists of weekly sessions for six months and monthly sessions for the remaining six months and has been shown to reduce the risk of type 2 diabetes by 58%. The goals of the National DPP are to decrease body weight by 5-7% and increase total exercise to 150 minutes a week.

In order to help reduce the rate of diabetes and prediabetes in Missouri, the Missouri Department of Health and Senior Services developed a campaign to raise awareness of prediabetes and drive those at risk toward the evidence-based National Diabetes Prevention Program. Specifically, the goals were to:

1. Raise awareness of prediabetes among people at high risk for type 2 diabetes;
2. Increase awareness of the National Diabetes Prevention Program lifestyle intervention program; and
3. Show increased demand for the National Diabetes Prevention Program.

The risk of prediabetes and diabetes increases with age. The Centers for Disease Control and Prevention (CDC) has identified 45 as the age when, on average, an increased risk for prediabetes begins. Therefore, Missourians 45 and older were the primary target audience for the Missouri campaign. In addition to age, race/ethnicity is a risk factor. Those groups at higher risk are African American, Hispanic/Latino, American Indian, Asian American, or Pacific Islander. However, in Missouri, only two of those groups have sizable populations: African Americans and Hispanic/Latino. As higher risk groups, African Americans and Hispanic/Latinos were considered a secondary audience.

In Missouri, at the time the campaign was initiated, the in-person, National DPPs were located in the metro Kansas City and metro St. Louis areas. However, virtual National DPPs were available statewide. Additionally, African Americans and Hispanic/Latinos, who are at higher risk, are concentrated in the Kansas City and St. Louis areas. Because of these factors, there was a heavier concentration of the campaign in these areas and the evaluation, likewise, was focused in these geographical areas.

Surveys were administered in three waves to 2,300+ people in the St. Louis and Kansas City areas before and after the campaign was launched.

The DHSS contracted with the Health Communication Research Center at the University of Missouri to plan, coordinate and evaluate the campaign, and produce some campaign assets; Elasticity, a creative firm in St. Louis to produce most of the campaign creative; and True Media, a Columbia-based firm, to handle the media purchases.
THE CAMPAIGN

In order to maximize both impact and campaign funding, the campaign was planned in “doses,” so that four active phases of the campaign occurred, with time gaps of several months in between. The timing was planned to build on existing health awareness campaigns surrounding diabetes, including Diabetes Awareness Month in November and Diabetes Alert Day in March. The first phase was an exception, however, as the grant year was nearing an end, so the timing coincided with grant deadlines.

The campaign, dubbed “Take It Back,” used humor to convey the idea that while people can’t “take back” embarrassing or painful moments in their past, they can “take back” prediabetes by changing their lifestyle and thereby preventing their prediabetes from progressing to diabetes. This campaign concept was chosen among three concepts based on feedback from community-based DPP coaches and digital A/B testing.

As of June 2018, the campaign had produced over 96 million impressions, including both traditional media and digital. The digital campaign generated more than 891,000 video views and 65,000 clicks, however, 65,000 is a conservative estimate as some data was not captured due to a miscommunication between vendors. The risk quiz, which was the primary call to action, had been completed 2050 times and the ReverseYourRisk.com website, where the quiz lives, had had over 35,000 users.

<table>
<thead>
<tr>
<th>Phase</th>
<th>Channel</th>
<th>Impressions</th>
<th>Phase</th>
<th>Channel</th>
<th>Impressions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Newspaper</td>
<td>280,400</td>
<td>3</td>
<td>Bus KC</td>
<td>846,886</td>
</tr>
<tr>
<td>1</td>
<td>Display</td>
<td>6,235,123</td>
<td>3</td>
<td>Bus STL</td>
<td>1,512,000</td>
</tr>
<tr>
<td>1</td>
<td>Pandora</td>
<td>4,034,664</td>
<td>3</td>
<td>Pandora</td>
<td>7,653,951</td>
</tr>
<tr>
<td>1</td>
<td>YouTube</td>
<td>7,596,258</td>
<td>3</td>
<td>Display</td>
<td>5,523,565</td>
</tr>
<tr>
<td>1</td>
<td>Radio</td>
<td>4,533,100</td>
<td>4</td>
<td>Newspaper</td>
<td>285,400</td>
</tr>
<tr>
<td>2</td>
<td>Bus KC</td>
<td>1,693,773</td>
<td>4</td>
<td>Radio</td>
<td>3,444,845</td>
</tr>
<tr>
<td>2</td>
<td>Bus STL</td>
<td>4,536,000</td>
<td>4</td>
<td>Programmatic Display</td>
<td>7,653,951</td>
</tr>
<tr>
<td>2</td>
<td>Dr. office ads</td>
<td>385,560</td>
<td>4</td>
<td>Programmatic Video</td>
<td>1,632,804</td>
</tr>
<tr>
<td>2</td>
<td>Pandora</td>
<td>10,576,016</td>
<td>4</td>
<td>Programmatic Native</td>
<td>3,352,350</td>
</tr>
<tr>
<td>2</td>
<td>Display</td>
<td>3,387,329</td>
<td>4</td>
<td>FB & Instagram</td>
<td>9,409,068</td>
</tr>
<tr>
<td>3</td>
<td>Radio</td>
<td>9,574,493</td>
<td>4</td>
<td>Pandora</td>
<td>2,244,755</td>
</tr>
<tr>
<td>3</td>
<td>Newspaper</td>
<td>428,100</td>
<td>TOTAL</td>
<td></td>
<td>96,810,391</td>
</tr>
</tbody>
</table>

The following are brief descriptions of each of the campaign phases:

Phase 1 – June 16-June 29, 2016

The initial phase of the campaign included newspaper and radio ads, print materials distributed at partner locations, and digital advertising. The newspaper and radio ads targeted outlets with a primarily minority audience and encouraged readers to go to the ReverseYourRisk.com website for more information and to take the risk quiz. Those who took the risk quiz and scored in the high-risk category were directed to resources on the website, including where to find National DPPs in Missouri.
Campaign print materials were developed as part of the Take It Back theme, including the newspaper ad below, which used a stock photo of a young, African American man. The plan had been to use stock photos of people in “bad” prom clothes, but most of the photos available were of white prom attendees. With the short turn-around during the initial phase, there was not time for a photo shoot.

A spot for radio/Pandora used the following script:

A misspelled tattoo inked during your college years. That 1980s hair-don’t from your senior prom photos. Some things you can’t take back. Some things you can. You can take charge and reverse the risk associated with prediabetes. Take a fast risk assessment test online and take control of your health at ReverseYourRisk.com.

Newspaper ads began on June 16 and ran through the end of the grant period, June 29. Take It Back ads were placed in three newspapers with a primarily African American readership and two with a mainly Latino/Hispanic readership. The ads urged readers to visit the website to find out if they were at risk.

The radio spot also used the Take It Back message and urged listeners to visit the website to find out if they were at risk. Originally the ads were planned for stations with listeners who were mainly African American or Latino, however the compressed time schedule meant more funding was available so the decision was made to expand to other popular radio stations.

Digital advertising for the first phase included three digital formats:

- Display ads – Advertising on websites
- Pandora ads – Audio and visual ads on the popular music streaming platform
- YouTube – Popular video platform

The target audience for the digital ads were Missourians 45 and older. The display and Pandora ads encouraged listeners/views to go to the website to learn about their risk. For the YouTube video, a 30-second video featuring St. Louis physicians was used to encourage patients to go to the ReverseYourRisk.com website.

As previously mentioned, the ReverseYourRisk.com website was developed as a landing page for campaign respondents to learn more about their risk for prediabetes. The website included an up-to-date listing of
Missouri National DPPs, information about risk and ways to prevent diabetes, and information for health care providers.

Phase 2 – September-November 2016
The second phase of the campaign started in September 2016 and continued through November, which is Diabetes Awareness Month.

Elasticity staged a photo shoot to improve the visual materials available for diverse audiences. The photo shoot included a “bad” prom photo of the African American couple pictured in the transit ad below:

Another photo shoot was staged to appeal to Spanish-speaking audiences. Proms are not as prominent in the Latino community and therefore were less culturally-relevant. Quinceañeras (coming-out parties for fifteen-year-old girls) are very prominent, but because they occur at such a young age, it might have been considered insensitive to incorporate those into the campaign as bad fashion decisions, like the prom photos. Therefore, a picture of a man with tattoos that had been marked out was developed as a the visual material for the Latino audience, pictured below:
A new round of digital targeting began statewide during this period, using the same message and call to action as phase 1. Display ads and Pandora were again used as tactics. Conversions during this period were not measured due to a miscommunication between contractors.

During this phase, 30 second ads were also shown in medical waiting rooms in the St. Louis and Kansas City metro locations. The ads used a 30 second video of physicians encouraging viewers to determine their risk of prediabetes.

This phase included transit advertising – both inside buses and on the rear of buses. Radio and newspaper ads were planned for this period but did not run due to a confounding issue with funding and approval of creative materials for the newspaper ads.

The ReverseYourRisk.com website was updated to include an employer section with resources for employers who want to offer National DPPs to their employees.

Phase 3 – March – June, 2017

Phase three, which was timed to coincide with Diabetes Alert Day on March 28, added several new executions of the Take It Back concept, including a 30 second spot for terrestrial radio and online streaming, recorded in English and Spanish, using the concept of a baseball error. Additionally, a video was produced to highlight a participant success story from a National DPP. The 30 second version was used as an asset for digital advertising.

New digital strategies included native advertising which uses content that looks similar to the editorial format for an online publication, thereby driving engagement. Pandora and display ads continued to be utilized.

During this phase, Columbia and Springfield were added to the radio markets, which still included Kansas City and St. Louis. Ads were played during four, two-week periods separated by short periods of down time to maximize campaign dollars.

Like previous phases, phase 3 included newspapers in Kansas City and St. Louis with a majority African American or Latino audience (3 half-page ads each); and transit advertising in Kansas City and St. Louis.

Phase 4 – October – December 2017

Phase four was timed to coincide with National Diabetes Month in November 2017. In anticipation of this period, a new series of “man on the street” videos were produced to be used with digital strategies. The series featured diverse groups of interviewees who confessed moments in life they wished they could take back, including a man who had been tricked into eating a chocolate covered roach and a woman who expressed regret for having worn her hair in a Jheri curl. In order to increase engagement with the content, the roach video was developed into a quick game where animated roaches appeared on the screen that could be deposited into a hole using the mouse.
The video assets were used as “pre-roll” advertising where a video plays before playing the selected video on platforms like YouTube and was also used as paid posts on Facebook and Instagram.

The campaign again used native advertising, display and Pandora as digital strategies and incorporated newspaper and radio advertising. The half-page print ads ran twice in November and the radio ran in Kansas City and St. Louis for three weeks in November. A new, African American targeted radio ad was developed to depict a child laughing at his father’s old pictures with an outdated hair style.

Other campaign assets developed

Though the “Take It Back” campaign focused on consumers, health care providers were also a target audience for the overall campaign. In order to reach providers to encourage them to screen, test and refer patients to National DPPs and to increase interest in providing DPPs, several campaign assets were developed, including exhibit materials to be used at provider conferences, brochures intended for use in health care provider offices (and other locations), a provider video and a provider page of the ReverseYourRisk.com website.
DATA COLLECTION

Pre-campaign surveys were administered immediately before the first campaign phase in June 2016 and the post-campaign surveys were administered during the second phase of the campaign in November 2016, and again during the third phase of the campaign in November 2017 to measure the effect of the campaign on consumers.

Eligible survey participants had not been diagnosed with diabetes and had to be 45 or older unless they identified as Black/African American or Latino/Hispanic. If they identified as one of those two minority population groups, they only needed to be age 18 or older. Respondents were given $5 cash for participating, in order to increase the response rate. The survey asked questions about participants’ awareness and knowledge of diabetes and prediabetes, their use of media and media devices, their sources of information on diabetes and prediabetes, as well as whether participants’ thinking or behavior changed after exposure to prediabetes and diabetes media messages. Demographic information collected included gender, age, race/ethnicity, and education level.

Location
Surveys were collected at a total of 15 different locations in the St. Louis and Kansas City metro areas. Specifically, pre-campaign surveys were collected in 14 locations (7 in St. Louis and 7 in Kansas City), post- 2nd phase HCRC campaign surveys were collected in 12 locations (6 in St. Louis and 6 in Kansas City) and post – 3rd phase campaign surveys were collected in 12 locations (six in St. Louis and six in Kansas City). Though the pre/post surveys were not in matched sets, where possible, researchers returned to the same locations for the post surveys in order to best approximate the population characteristics of the pre-campaign surveys. Locations were chosen based on existing relationships with organizations in the metro areas with high minority populations.

Table 4: Survey locations

<table>
<thead>
<tr>
<th>ST. LOUIS</th>
<th>Blues Festival</th>
<th>Downtown YMCA</th>
<th>Emerson YMCA</th>
<th>North Co. Save-A Lot</th>
<th>O’Fallon Park YMCA</th>
<th>St. Vincent Community Center</th>
<th>Ladies of Charity</th>
<th>West County YMCA</th>
<th>Wildwood YMCA</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre</td>
<td>25</td>
<td>103</td>
<td>72</td>
<td>35</td>
<td>93</td>
<td>49</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>400</td>
</tr>
<tr>
<td>Post 2nd Phase</td>
<td>0</td>
<td>59</td>
<td>76</td>
<td>0</td>
<td>132</td>
<td>104</td>
<td>15</td>
<td>15</td>
<td>0</td>
<td>401</td>
</tr>
<tr>
<td>Post 3rd Phase</td>
<td>0</td>
<td>26</td>
<td>104</td>
<td>0</td>
<td>154</td>
<td>80</td>
<td>11</td>
<td>0</td>
<td>31</td>
<td>406</td>
</tr>
<tr>
<td>Total</td>
<td>25</td>
<td>188</td>
<td>252</td>
<td>35</td>
<td>379</td>
<td>233</td>
<td>49</td>
<td>15</td>
<td>31</td>
<td>1207</td>
</tr>
</tbody>
</table>
This section will describe frequency data from the 2300+ surveys collected in the St. Louis and Kansas City metro areas. Pre and post audiences were similar demographically during the three phases of the campaign, however, gender distribution was somewhat of an exception as it skewed female during the pre-intervention data collection.

Gender

There was a total of 2,323 participants who filled out the survey. Of them, 1,031 (44.4%) were male and 1,263 (54.4%) were female. One person reported gender as “Other” and 28 (1.2%) did not report their gender. Of the 2,294 participants who reported as either male or female, 742 filled out the survey before the media campaign, 764 filled out the survey after the 2nd phase of the media campaign, and 788 filled out the survey after the 3rd phase of the campaign. Gender distribution did differ in the three data collections. During the pre-campaign data collection there were 20% more female participants, while in the post-campaign data collections, the gender distribution was more even.

![Figure 1: Participant gender](image-url)
Race/ethnicity
For race/ethnicity, 91 (3.9%) reported that they were of Hispanic, Latino/a, or Spanish origin, 2,179 (93.8%) reported they were not, and 53 (2.3%) did not answer this question. In addition, 56 (2.4%) reported they were American Indian/Alaska Native, 23 (1.0%) reported Asian, 1,755 (75.5%) reported Black/African American, 15 (0.6%) reported Pacific Islander, 467 (20.1%) reported White, and 97 (4.2%) reported Other. Note that these race/ethnicity groups are not exclusive as a participant may choose multiple categories. However, for this project it was necessary to define high risk groups, therefore, we created exclusive categories. Any participant who reported as of Hispanic, Latino/a, or Spanish origin, was coded as “Hispanic”; next for those who were not coded as Hispanic, if the “Black/African American” category was chosen, they were coded as “Black”; next if a non-Hispanic participant chose “White” only, the participant was coded as “White”; the rest, including those who only reported as American Indian/Alaska Native, Asian, Pacific Islander, or Other, or those who did not choose any category, were coded as “Other races.” This recoding allowed researchers to focus on Hispanic and Black participants, the state’s two largest minority groups which are at higher risk for prediabetes and diabetes (i.e., at-risk groups). After the recoding, of the 2,323 participants, 1,714 were Black (73.8%), 91 (3.9%) were Hispanic, 399 were white (17.2%), and 119 were classified as other (5.1%).

Of the 2,323 participants, 752 (32.4%) filled out the survey before the prediabetes media campaign; of them, 591 were Black, 26 were Hispanic, 101 were white, and 34 were other. 776 (33.4%) filled out the survey after the 2nd phase of the prediabetes media campaign, of them, 551 were Black, 43 were Hispanic, 146 were white, and 36 were Other. 795 (34.2%) filled out the survey after the 3rd phase of the campaign, of them, 572 were Black, 22 were Hispanic, 152 were white, and 49 were Other.

Table 5: Participant race/ethnicity

<table>
<thead>
<tr>
<th></th>
<th>Black</th>
<th>Hispanic</th>
<th>White</th>
<th>Other</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre</td>
<td>591</td>
<td>26</td>
<td>101</td>
<td>34</td>
<td>752</td>
</tr>
<tr>
<td>Post 2</td>
<td>551</td>
<td>43</td>
<td>146</td>
<td>36</td>
<td>776</td>
</tr>
<tr>
<td>Post 3</td>
<td>572</td>
<td>22</td>
<td>152</td>
<td>49</td>
<td>795</td>
</tr>
<tr>
<td>Total</td>
<td>1714</td>
<td>91</td>
<td>399</td>
<td>119</td>
<td>2323</td>
</tr>
</tbody>
</table>
For the remainder of this analysis, other races have been combined with White as the African Americans and Hispanic/Latinos were the main racial/ethnic focuses of this evaluation.

Age
By age, 225 (9.7%) participants were ages 18-24, 609 (26.2%) were ages 25-44, 856 (36.8%) were ages 45-64; 586 (25.2%) were 65 or older; and 47 (2.0%) either did not report their age or were younger than 18 years old. Those under 18 were removed from the analysis. The crosstabulation of age group by data collection wave is shown in Figure 3.

High risk groups for diabetes and prediabetes were Black and Hispanic adults (18 years or older) and all people ages 45 years or older, regardless of race/ethnicity. Using these criteria, there were 2262 (97.4%) participants in this sample who were at risk for diabetes and prediabetes. The other 61 participants (2.6%) were younger than 45 and were categorized into “Other races” group and therefore were not considered high risk. This suggests that our survey successfully targeted high risk groups.
Education
By highest education level, 164 participants had no high school diploma or GED, 597 had a high school diploma or GED, 674 had some college education but did not graduate, 542 had a college degree, and 310 had postgraduate or professional degree. 36 people did not report their highest education level. The crosstabulation of education level by data collection wave is shown in Figure 4.

Figure 4: Participant education level

<table>
<thead>
<tr>
<th>Highest education level attained</th>
<th>Pre</th>
<th>Post 2</th>
<th>Post 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>No high school diploma or GED</td>
<td>8.1%</td>
<td>6.8%</td>
<td>6.6%</td>
</tr>
<tr>
<td>High school diploma or GED</td>
<td>26.9%</td>
<td>7.5%</td>
<td>24.0%</td>
</tr>
<tr>
<td>Some college, but did not graduate</td>
<td>31.8%</td>
<td>28.6%</td>
<td>28.1%</td>
</tr>
<tr>
<td>College degree</td>
<td>21.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postgraduate or professional degree</td>
<td>12.0%</td>
<td>2.4%</td>
<td>16.1%</td>
</tr>
</tbody>
</table>

AWARENESS AND KNOWLEDGE OF DIABETES AND PREDIABETES

A total of eight questions were asked about participants’ awareness and knowledge of diabetes and prediabetes:
(A) Have you heard about prediabetes?
(B) Have you heard the message from the Take It Back prediabetes campaign?
(C) Have you heard about diabetes prevention programs?
(D) Are you concerned about your risk of prediabetes?
(E) Has your health care provider told you that you have prediabetes or borderline diabetes?
(F) Has your health care provider adequately explained your risk for type 2 diabetes?
(G) Do you know the difference between prediabetes and type 2 diabetes?
(H) Do you know where to find a National Diabetes Prevention Program in your community or online?

Participants could choose “Yes,” “No,” or “Not sure” for each of these questions.

Using data from the 2,622 participants who met the criteria of high risk groups for diabetes and prediabetes, we conducted a series of analyses to compare participants’ awareness and knowledge of diabetes and prediabetes before and after the prediabetes campaign. Specifically, we compared the proportions/percentages of people who chose each of the three response options (Yes, No, or Not sure) to
each of the awareness and knowledge questions before the prediabetes campaign, after the 2nd phase of the campaign, and after the 3rd phase of the campaign. Z-tests were used to compare column proportions of each response at the three data collections. The results are described below:

Have you heard about prediabetes?

The percentage of people who answered “Yes” to question “A) Have you heard about prediabetes?” statistically significantly increased from before the campaign (57.4%), to after the 2nd phase of the campaign (63.1%), and to after the 3rd phase of the campaign (69.5%). At the same time, the percentage of people who answered “No” to the same question was lowered (36.9% before the campaign, 31.8% after the 2nd phase of the campaign, and 26.3% after the 3rd phase of the campaign). The change in percentage of people of who answered “Not sure” to the question was not statistically significant (5.7% before the campaign, 5.1% after the 2nd phase of the campaign, and 4.2% after the 3rd phase of the campaign).

Figure 5: Awareness of prediabetes

![Graph showing the percentage of people who have heard about prediabetes before and after the campaign phases](image)

Have you heard the message from the Take It Back campaign?

As to the question “B) Have you heard the message from the Take It Back prediabetes campaign?” The percentages of people who chose “Yes” did increase with each wave of data collection, however, none of the three response options had a statistically significant change after the 2nd or 3rd phase of the campaign.
The high number of campaign impressions indicate that there was a high exposure to the campaign in the data collection locations. However, since recall was low after the initial phase of the campaign, we wondered whether people who were exposed might have a higher recall when shown campaign visuals that they may have seen from digital or print ads. We asked participants to respond whether they had seen or heard from any of three campaigns, Take It Back plus two decoy campaigns. Recall was higher when shown the visual material for Take I Back than when we asked the question with no visuals (11.3% compared to 18%). However, one of the decoys, “Give Me 5,” also scored quite high (15.7%). There have been other campaigns with the “Give Me 5” tagline (not related to prediabetes) so we expected there to be some confusion with this decoy. However, the “No excuses” decoy, which had had no similar counterparts, scored well below the recall for the real campaign, at just 6.5%
Take It Back 18.0%

No excuses 6.5%

Give Me 5 15.7%

Have you heard about diabetes prevention programs?
As to question “C) Have you heard about diabetes prevention programs?” The percentages of people who chose response option “Yes” or “No” did not change statistically significantly after the 2nd or 3rd phase of the campaign. Nevertheless, the majority of people said they had heard about prediabetes prevention programs (59.4% before the campaign, 60.8% after the 2nd phase of the campaign, and 64.4% after the 3rd phase of the campaign). The percentage of people who answered “Not sure” decreased statistically significantly, from 5.3% before the campaign, to 4.4% and 2.7% after the 2nd and 3rd phases of the campaign, respectively.
Are you concerned about your risk for prediabetes?
As to question “(D) Are you concerned about your risk of prediabetes?” The percentage of people who answered “Yes” decreased statistically significantly after the 2nd phase of the campaign and remained decreased after the 3rd phase of the campaign (50.4% before the campaign, 46.6% after the 2nd phase of campaign, and 42.2% after the 3rd phase of the campaign). The percentage of people who answered “No” increased statistically significantly after the 2nd phase of the campaign and remained increased after the 3rd phase of the campaign (43.1% before the campaign, 45.2% after the 2nd phase of campaign, and 49.3% after the 3rd phase of the campaign). The percentages for the “Not sure” response option did not change statistically significantly.
Has your health care provider told you that you have prediabetes?
As to question “(E) Has your health care provider told you that you have prediabetes or borderline diabetes?” The percentages of people who chose response options “Yes” or “No” did not differ statistically significantly between the three data collections. It is worthwhile to note that the percentage of people who answered “No” to this question was very high (81.6% before the campaign, 83.5% after the 2nd phase of the campaign, and 81.5% after the 3rd phase of the campaign). The small percentages of people who answered “Not sure” decreased and then increased statistically significantly (1.9% before the campaign, 1.2% after the 2nd phase of the campaign, and 2.9% after the 3rd phase of the campaign).

Figure 9: Provider diagnosis

| Has your health care provider told you that you have prediabetes or borderline diabetes? |
|-----------------------------------|---------------------------------|----------------------|
| 100.00% | 80.00% | 60.00% |
| 60.00% | 40.00% | 20.00% |
| 20.00% | 0.00% | |
| Pre | Post 2 | Post 3 |

Has your health care provider explained your risk for type 2 diabetes?
As to question “(F) Has your health care provider adequately explained your risk for type 2 diabetes?” The percentages of people who chose each of the three response options did not differ statistically significantly between the three data collections. Nevertheless, the majority of people answered No to this question (61.9% before the campaign, 63.2% after the 2nd phase of the campaign, and 58.9% after the 3rd phase of the campaign).
Figure 10: Provider explanation

Has your health care provider adequately explained your risk for type 2 diabetes?

<table>
<thead>
<tr>
<th></th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post 3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Do you know the difference between type 2 diabetes and prediabetes?

As to question “(G) Do you know the difference between prediabetes and type 2 diabetes?” The percentage of people who answered “Yes” after the 3rd phase of campaign was statistically significantly higher than before the campaign, and also statistically significantly higher than after the 2nd phase of the campaign. (31.2% before the campaign, 32.4% after the 2nd phase of the campaign, and 39.3% after the 3rd phase of the campaign).
Do you know where to find a National Diabetes Prevention Program in your community or online?

As to question “(H) Do you know where to find a National Diabetes Prevention Program in your community or online?” The percentages of people who chose each of the three response options did not differ statistically significantly between the three data collections. *Nevertheless, the majority of people answered No to this question (59.3% before the campaign, 58.3% after the 2nd phase of the campaign, and 55.5% after the 3rd phase of the campaign).*
Understanding the scope of prediabetes

In addition to the eight questions above, two questions specifically tested participants’ knowledge on diabetes and prediabetes. Participants were asked to rate two statements as “True,” or “False”: One in ten people in the United States has diabetes, and One in three people in the United States has prediabetes. The correct answer to both statements is True. A high percentage of participants were able to choose the correct answer to either question. For the first question One in ten people in the United States has diabetes, the percentage of people who chose the correct answer increased and then decreased statistically significantly, and there was no statistically significant difference between before the campaign and after the 3rd phase of the campaign (87.2% before the campaign, 88.3% after the 2nd phase of the campaign, and 84.6% after the 3rd phase of the campaign). For the second question, one in three people in the United States has prediabetes, the percentage of people who chose the correct answer did not change statistically significantly.
Summary for participants’ awareness and knowledge on diabetes and prediabetes: The campaign improved participants’ general awareness but not awareness of specific campaign programs of prediabetes. The majority of people claim to be aware of diabetes prevention programs and know some facts. **Although the campaign effect was not seen after the 2nd phase of the campaign on people’s knowledge on diabetes and prediabetes, there seemed to be campaign effects after the 3rd phase of the campaign.** In addition, participants did not seem to get adequate information from their health care providers to improve their knowledge on diabetes and prediabetes.

SOURCES OF INFORMATION

Device use and media consumption
Participants answered questions regarding whether they regularly consume 12 types of media or use media devices:
A) Read any newspapers?
B) Watch any television news programs?
C) Listen to news on the radio?
D) Read news online?
E) Look for health information online?
F) Listen to an online music streaming program?
G) Watch health ads on the TV screens at your doctor’s office? (Only on the surveys before the campaign and after the 2nd phase of the campaign)
H) See health ads while driving or taking public transportation?
I) Use a cell phone or smartphone? (Only on the surveys before the campaign and after the 2nd phase of the campaign)

J) Use a desktop or laptop computer? (Only on the surveys before the campaign and after the 2nd phase of the campaign)

K) Use a tablet computer (iPad, Kindle, Google tablet, etc.)? (Only on the surveys before the campaign and after the 2nd phase of the campaign)

L) Get on the internet from your home? (Only on the survey after the 3rd phase of the campaign)

Participants could choose “Yes,” “No,” or “Not sure” for each of these questions. There were some small differences between the three data collections for A) Reading newspapers, B) Watching television news programs, F) Listening to an online music streaming program, and H) Seeing health ads while driving or taking public transportation.

Television news programs were the most often consumed mass media by the population at 87.5%, and radio news was the second at 71.8%.
Prediabetes messaging in specific media

In addition to device use and media consumption in general, participants answered 11 questions regarding sources and how often they saw or heard about prediabetes and diabetes prevention from that source. The listed sources were:

A) Television news programs (such as newscasts, 60 Minutes, Dateline, 20/20)?
B) Television shows (such as Grey’s Anatomy, Empire, NCIS)?
C) Television commercials?
D) Articles in newspapers or magazines?
E) Advertisements in newspapers or magazines?
F) Internet (Google or sites like WebMD)?
G) Social networking sites (such as Facebook, Twitter, or Instagram)?
H) Radio news programs/shows?
I) Radio advertising?
J) Use a desktop or laptop computer?
K) Use a tablet computer (iPad, Kindle, Google tablet, etc.)?
L) Get on the internet from your home?

* Items G, I, J and K were calculated using only the first two campaign waves and item L was calculated using only the third wave of the data collection.
J) Doctor’s office/health care waiting room? (Only on the surveys before the campaign and after the 2nd phase of the campaign)
K) Transit (outdoor or bus ads)?

There were six response options: Very often, Often, Neutral, Not often, Not at all often, and Never.

For the sources and frequency of seeing or hearing about prediabetes and diabetes prevention, response options were combined into: 1) Never/Not at all often/Not often, 2) Neutral, and 3) Often/Very often, for statistical analysis.

There were no statistically significant differences in the frequencies of seeing or hearing about prediabetes and diabetes from six of the 11 sources between the three waves of data collections: before the campaign, after the 2nd phase of the campaign, and after the 3rd phase of the campaign. For the other five sources, there were some statistically significant differences. Specifically, for B) Television shows (such as Grey’s Anatomy, Empire, NCIS), the percentage of participants who answered Never/Not at all often/Not often increased statistically significantly from before the campaign to after the 2nd phase of the campaign and the increase maintained after the 3rd phase of the campaign; the percentage of participants who answered Often/Very often decreased statistically significantly from before the campaign to after the 2nd phase of the campaign and dropped again statistically significantly after the 3rd phase of the campaign. For D) Articles in newspapers or magazines, the percentage of participants who answered Never/Not at all often/Not often increased statistically significantly from before the campaign to after the 2nd phase of the campaign and then dropped after the 3rd phase of the campaign to a level that was comparable to before the campaign; the percentage of participants who answered Often/Very often decreased statistically significantly from before the campaign to after the 2nd phase of the campaign and the drop maintained after the 3rd phase of the campaign. For E) Advertisements in newspapers or magazines, the percentage of participants who answered Never/Not at all often/Not often increased statistically significantly from before the campaign to after the 2nd phase of the campaign and then dropped after the 3rd phase of the campaign to a level that was comparable to before the campaign; the percentage of participants who answered Often/Very often decreased statistically significantly from before the campaign to after the 2nd phase of the campaign and increased after the 3rd phase of the campaign but the increase was not statistically significantly. For H) Radio news programs/shows, the percentage of participants who answered Never/Not at all often/Not often did not change statistically significantly between the three data collections; the percentage of participants who answered Often/Very often decreased but not statistically significantly from before the campaign to after the 2nd phase of the campaign and dropped but not statistically significantly from after the 2nd phase of the campaign to after the 3rd phase of the campaign. The decrease from before the campaign to after the 3rd phase of the campaign was statistically significant. For J) Doctor’s office/health care waiting room, the percentage of participants who answered Often/Very often decreased statistically significantly from 55.2% before the campaign to 49.0% after the 2nd phase of the campaign.

Summary for sources of information on diabetes and prediabetes: The majority of participants used the media and media devices intended for the campaign. However, the campaign did not increase participants’ frequencies of seeing or hearing about prediabetes and diabetes prevention from different sources.
CHANGES IN BEHAVIOR OR THINKING

Participants answered eight questions asking how prediabetes and diabetes media messages may have changed their thinking or behavior. These questions started with “After seeing or hearing media messages on prediabetes...” and followed with:

A) Are the messages easy to understand?
B) Have you noticed prediabetes information from other sources?
C) Have you changed your eating behavior?
D) Have you made changes in your physical activity?
E) Do you plan to talk to your health care provider about your risk for diabetes or prediabetes?
F) Have you been screened for diabetes?
G) Have you enrolled in a National Diabetes Prevention Program?
H) I am interested in enrolling in a National Diabetes Prevention Program.

Participants chose one of six response options, Strongly agree, Agree, Neither agree or disagree, Disagree, Strongly disagree, and Not applicable. These response options were combined into 1) Strongly disagree/Disagree, 2) Neither agree or disagree, and 3) Agree/Strongly agree. The option “Not applicable” was coded as missing.

There were no statistically significant differences in participants’ responses to three of the eight questions between the three data collections. For the other five questions, there were some statistically significant differences. Specifically, for D) Have you made changes in your physical activity?, the percentage of people who answered Strongly disagree/Disagree increased after the 2nd phase of the campaign; and the percentage of people who chose Agree/Strongly agree decreased after the 2nd phase the campaign. For E) Do you plan to talk to your health care provider about your risk for diabetes or prediabetes?, the percentage of people who answered Neither agree or disagree increased after the 2nd phase the campaign. For F) Have you been screened for diabetes?, the percentage of people who answered Strongly disagree/Disagree increased after the 2nd phase the campaign; and the percentage of people who chose Agree/Strongly agree decreased after the 2nd phase the campaign. For G) Have you enrolled in a National Diabetes Prevention Program?, the percentage of people who answered Agree/Strongly agree decreased after the 3rd phase the campaign. For H) I am interested in enrolling in a National Diabetes Prevention Program, the percentage of people who answered Neither agree or disagree increased after the 2nd phase the campaign; the percentage of people who answered Agree/Strongly agree decreased after the 2nd phase the campaign; the percentage of people who answered Strongly disagree/Disagree increased after the 2nd phase the campaign; and decreased again after the 3rd phase of the campaign.

Nevertheless, across all participants, the majority thought prediabetes and diabetes media messages were easy to understand, the messages had changed their eating behavior and their physical activity, they planned to talk to their health care providers about their risk for diabetes and prediabetes, and they had been screened for diabetes.
Figure 15: Perception and reported behavioral change after exposure to prediabetes messages

Summary for whether prediabetes and diabetes media messages changed participants’ thinking or behavior:
Participants in general answered favorably in terms of whether prediabetes and diabetes media messages changed their thinking or behavior. However, these changes do not appear to be related to the specific media campaign.

Differentiated Campaign Effects by Subgroups
The prediabetes campaign may have worked differently for different subgroups. Specifically, we considered subgroups by gender (male vs. female), race (Black, Hispanic, and other races), age groups (18-24 years, 25-44 years, 45-64 years, and 65 years or over), and education level (No high school diploma or GED, High school diploma or GED, Some college, but did not graduate, College degree, and Postgraduate or professional degree). Data from the 2,262 participants who were in high risk groups (Black and Hispanic adults, and all people ages 45 years or older) were analyzed.
For these subgroups, we focused on questions to which participants responded differently before and after the prediabetes campaign and/or questions that are mostly closely related to the campaign. Specifically, the following questions were analyzed and compared for subgroups:

Questions about awareness and knowledge on diabetes and prediabetes:
(1) Have you heard about prediabetes;
(2) Do you know the difference between prediabetes and type 2 diabetes; and
(3) Have you heard the message from the Take it Back prediabetes campaign;
(4) Are you concerned about your risk of prediabetes.

Gender Subgroups:
There were some statistically significant increases in the knowledge questions (1 and 2) for both men and women, though the increase was more consistent for women. Women tended to have a slightly higher knowledge of prediabetes, which is consistent with health communication literature. However, it is surprising to see that men tended to have a higher concern for risk of prediabetes and that for both genders, the concern for risk decreased over the course of the campaign.
(1) Have you heard about prediabetes? The percentage of males who answered “Yes” did not change statistically significantly after the 2nd phase of the campaign, but increased statistically significant after the 3rd phase of the campaign (49.7% before the campaign, 52.8% after the 2nd phase of the campaign, and 61.6% after the 3rd phase of the campaign). The percentage of males who answered “No” decreased after the 2nd phase of the campaign but the decrease was not statistically significant; it continued to decrease after the 3rd phase of the campaign (43.5% before the campaign, 40.7% after the 2nd phase of the campaign, and 34.5% after the 3rd phase of the campaign). Although the second decrease was not statistically significant either, the two decreases resulted in a statistically significant lower percentage of males answering “No” after the 3rd phase of the campaign, compared to pre-campaign. The percentage of females who answered “Yes” increased statistically significantly (from 62.6% to 72.6%) after the 2nd phase of the campaign and the increase maintained after the 3rd phase of the campaign at 76.2%. Consistently, the percentage of females who answered “No” decreased statistically significantly (from 32.4% to 23.5%) after the 2nd phase of the campaign and the decreased maintained after the 3rd phase of the campaign at 19.6%.

Figure 16: Have heard about prediabetes by gender

(2) Do you know the difference between prediabetes and type 2 diabetes. The percentage of females who answered “Yes” increased statistically significantly (from 32.5% to 39.9%) after the 2nd phase of the campaign. The percentage of females who answered “No” decreased statistically significantly (from 58.6% to 48.1%) after the 2nd phase of the campaign. The percentage of males who answered “Yes” decreased statistically significantly after the 2nd phase of the campaign, and then increased statistically significantly after the 3rd phase of the campaign, to the level that was compared to the pre-campaign phase. Consistently, the percentage of males who answered “No” increased statistically significantly after the 2nd phase of the campaign, and then decreased statistically significantly after the 3rd phase of the campaign, to the level that was compared to the pre-campaign phase.
(3) Have you heard the message from the *Take It Back* prediabetes campaign? For both gender groups, the percentage of people who answered “Yes” or “No” did not differ statistically significantly between the three data collections.

(4) Are you concerned about your risk of prediabetes. The percentage of either males or females who answered “No” did not differ statistically significantly between the three data collections. *The percentage of both males of females who answered “Yes” decreased statistically significantly from the pre-campaign phase to after the 3rd phase of the campaign.*
Figure 18: Concern for risk by gender

Race/Ethnicity groups:
Overall, awareness seemed to increase for all races. There were statistically significant increases for Black respondents on both knowledge questions (1 and 2) and a statistically significant increase for Hispanic respondents on question 1. Awareness was generally higher for White/other race respondents than for the Black and Hispanic groups, though there was no statistically significant increase for White/other races. In terms of concern for risk, there was an unexpected decrease for Black and White/other race respondents. Black respondents, notably, had a higher concern for risk that of White/other race. Interestingly one of the few subgroups that had an increase in concern for risk, rather than a decrease was the Hispanic group. The sample sizes for this group were quite small, so caution should be used when interpreting this result, but it is promising.

(1) Have you heard about prediabetes? A higher percentage of Black participants answered “Yes” and a lower percentage of Black participants answer “No” after the 3rd phase of the campaign, compared to the first two data collections. A higher percentage of Hispanic participants answered “Yes” and a lower percentage of Hispanic participants answer “No” after the 2nd phase of the campaign, compared to the pre-campaign phase. The percentages of Hispanic participants who answered “Yes” or “No” did not differ statistically significantly between after the 2nd phase of the campaign and after the 3rd phase of the campaign. For White/Other races, the percentages did not differ statistically significantly between the three data collections.
(2) Do you know the difference between prediabetes and type 2 diabetes? A higher percentage of Black participants answered “Yes” after the 3rd phase of the campaign. Also, the percentage of Black participants who answered “No” was statistically significantly lower after the 3rd phase of the campaign, compared to the pre-campaign phase.
(3) Have you heard the message from the Take It Back prediabetes campaign. A higher percentage of Hispanic participants answered “Yes” after the 2^nd^ phase of the campaign, but this could be due to the very small number (9) of Hispanic participants who answered “Yes” overall. For Black and White/Other races, the percentages did not differ statistically significantly between the three data collections.

(4) Are you concerned about your risk of prediabetes. A lower percentage of Black participants answered “Yes” and a higher percentage of Black participants answered “No” after the 3^rd^ phase of the campaign. The percentage of Hispanic participants who answered “Yes” was statistically significantly higher after the 3^rd^ phase of the campaign, compared to the pre-campaign phase.
Age groups:
Generally, there was more movement in the awareness questions for the 25-44 and 45-64 age groups. The 45-64 group also had a statistically significant increase for campaign recall. Higher risk age groups (older), not surprisingly had a higher concern for risk, but again we see the phenomenon of concern for risk decreasing.

(1) Have you heard about prediabetes? For 18-24 and 65+ age groups, the percentage of people who answered “Yes” or “No” did not differ statistically significantly between the three data collections. For the 25-44 and 45-64 age groups, the percentage of people who answered “Yes” increased statistically significantly after the 3rd phase of the campaign, and the percentage of people who answered “No” decreased statistically significantly after the 3rd phase of the campaign, compared to the pre-campaign phase.

(2) Do you know the difference between prediabetes and type 2 diabetes? For 18-24 and 65+ age groups, the percentage of people who answered “Yes” or “No” did not differ statistically significantly between the three data collections. For the 25-44 and 45-64 age groups, the percentage of people who answered “Yes” increased statistically significantly after the 3rd phase of the campaign. In addition, the percentage of people who answered “No” decreased statistically significantly after the 3rd phase of the campaign, compared to the pre-campaign phase.

(3) Have you heard the message from the Take It Back prediabetes campaign? For the 45-64 age group, the percentage of people who answered “Yes” increased statistically significantly after the 3rd phase of the campaign, and the percentage of people who answered “No” decreased statistically significantly after the 3rd phase of the campaign, compared to the pre-campaign phase. For the other three age groups, the percentage of people who answered “Yes” or “No” did not differ statistically significantly between the three data collections.
(4) Are you concerned about your risk of prediabetes. For the 25-44 age group, the percentage of people who answered “Yes” decreased statistically significantly, and the percentage of people who answered “No” increased statistically significantly after the 3rd phase of the campaign, compared to the pre-campaign phase. For the 65+ age group, the percentage of people who answered “No” increased statistically significantly after the 2nd phase of the campaign and then decreased statistically significantly after the 3rd phase of the campaign, to a level that was comparable to the pre-campaign phase.

Figure 22: Concern for prediabetes by age

Education level subgroups:
Generally, higher education groups had a higher awareness of prediabetes. Interestingly, while there was generally a decrease in concern for risk across all education groups (with the exception of some of the college group from post 2 to post 3) the highest education groups (college grads and post grads) had the most noticeable and consistent decrease in concern for risk.

(1) Have you heard about prediabetes? For the No high school diploma or GED group, and the Some college, but did not graduate group, a statistically significantly higher percentage answered “Yes” after the 3rd phase of the campaign, compared to pre-campaign.
(2) Do you know the difference between prediabetes and type 2 diabetes? For the No high school diploma or GED group, the percentage of participants who answered “No” was significantly lower after the 3rd phase of the campaign, compared to after the 2nd phase of the campaign. For the High school diploma or GED group, the percentage of participants who answered “No” was significantly lower after the 3rd phase of the campaign, compared to pre-campaign. For the Some college, but did not graduate group, the percentage of participants who answered “Yes” was significantly higher after the 3rd phase of the campaign, compared to after the 2nd phase of the campaign. For the College degree group, the percentage of people who answered “No” decreased statistically significantly (from 52.9% to 42.4%) from pre-campaign to after the 2nd phase of the campaign and the decreased maintained after the 3rd phase of the campaign at 45.8%.
(3) Have you heard the message from the *Take It Back* prediabetes campaign? *For the Postgraduate or professional degree group, the percentage of participants who answered “Yes” significantly increased from pre-campaign to after the 3rd phase of the campaign, and the percentage of participants who answered “No” significantly decreased from pre-campaign to after the 2nd phase of the campaign and the decreased maintained after the 3rd phase of the campaign.* For any of the other education level groups, the percentage of people who answered “Yes” or “No” did not differ statistically significantly between the three data collections.
(4) Are you concerned about your risk of prediabetes. For the College degree group, the percentage of participants who answered “Yes” decreased significantly after the 2nd phase of the campaign and the decrease maintained after the 3rd phase of the campaign; the percentage of participants who answered “No” increased significantly after the 3rd phase of the campaign, compared to pre-campaign.

Figure 25: Concern for risk by education level

<table>
<thead>
<tr>
<th></th>
<th>Pre</th>
<th>Post 2</th>
<th>Post 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Did not grad high school</td>
<td>65.0%</td>
<td>60.0%</td>
<td>55.0%</td>
</tr>
<tr>
<td>High School/ GED</td>
<td>60.0%</td>
<td>55.0%</td>
<td>50.0%</td>
</tr>
<tr>
<td>Some college</td>
<td>55.0%</td>
<td>50.0%</td>
<td>45.0%</td>
</tr>
<tr>
<td>College grad</td>
<td>50.0%</td>
<td>45.0%</td>
<td>40.0%</td>
</tr>
<tr>
<td>Post graduate</td>
<td>45.0%</td>
<td>40.0%</td>
<td>35.0%</td>
</tr>
</tbody>
</table>

Summary for differentiated campaign effects by subgroups: The campaign seemed to have better effects on women participants and participants in the 25-44 and 45-64 age groups. The campaign effect seemed to kick in earlier for Hispanic participants than for Black participants, and earlier for those with more education than for those with lower education.

CONCLUSION

The campaign worked to some degree to improve participants’ awareness and knowledge on diabetes and prediabetes. The multiple-phase campaign, planned in “doses,” seemed to be working at different paces for different subgroups.

While several subgroups were more likely to have heard of the campaign, recall of the specific campaign was low. One limitation of the research is that the campaign has had a heavy digital component, yet, the evaluation data was collected in person. If the digital strategy continues, collecting some survey data from people who engage with the digital ads could be illuminating.

Another challenge of the research is that the samples are convenience samples and the pre/post results are not matched sets. Though we have tried to best approximate the previous populations by returning to the same locations, populations have nevertheless varied. For example, we have had groups of homeless
populations that have varied in size between waves. We did not have a way to capture this information on the survey, so we cannot compare their data, but it is likely that their media consumption varies from less vulnerable populations.

Another potential confounding variable is the effect of other campaigns, namely the CDC’s national Ad Council campaign. People in St. Louis and Kansas City may not have had a lot of exposure to the campaign, particularly during the first two waves of data collection, but may have had some exposure by the time of the third wave. Ad Council campaigns utilize donated ad space, which can be more difficult to find in metro areas, but it is likely that there was some exposure.

An interesting finding from this campaign is that while it does seem to have had a measurable increase on the awareness of prediabetes, there has also been a measurable reduction in the concern for risk of prediabetes. After the first two rounds of data collection, it was difficult to see this trend, but it emerged more clearly after the third round of data collection.

We looked at two knowledge measure by subgroup: (1) Have you heard about prediabetes? (2) Do you know the difference between prediabetes and type 2 diabetes?. There was a statistically significant increase in one of both for each of these groups: men, women, Black respondents, Hispanic respondents, respondents ages 25-44 and 45-64 and respondents who had not graduated high school or who had some college but had not graduated.

The reduction in concern for risk is notable because it was uniform across so many of the subgroups. Men, women, Black respondents, respondents ages 25-44, and respondents with college degrees all had a statistically significant decrease in their concern for risk of prediabetes, while only Hispanic respondents had an increase in concern for risk.

The inverse relationship between knowledge and concern could be an unexpected causal effect or could be related to a third factor. There are some findings in risk communication literature that could point to a possible mechanism to explain why knowledge and awareness could increase, while concern for a condition decreases. For example, some research has uncovered a positive correlation between perceived susceptibility to skin cancer and indoor tanning behavior. One possible explanation is that there is an interaction with a third factor - fatalism (Carcioppolo, 2016).

However, there could be a more straightforward reason why concern for risk seems to have decreased in our audience. The Take It Back campaign borrowed from CDC language to highlight the reversible nature of prediabetes. Here are passages from the CDC to illustrate:

It’s real. It’s common. And most importantly, it’s reversible. You can prevent or delay prediabetes from developing into type 2 diabetes with simple, proven lifestyle changes. https://www.cdc.gov/features/diabetesprevention/index.html

The good news is that if you have prediabetes, the CDC-led National Diabetes Prevention Program can help you make lifestyle changes to prevent or delay type 2 diabetes and other serious health problems. https://www.cdc.gov/diabetes/basics/prediabetes.html
Take It Back used similar language:

You can take charge and reverse the risk associated with prediabetes. Take a fast risk assessment test online and take control of your health at ReverseYourRisk.com. – Take It Back radio script excerpt.

You can’t take back 70s clothing, but you can reverse your risk for developing diabetes. Take the risk quiz at ReverseYourRisk.com. – Take It Back video script excerpt.

There’s good news. Unlike type 2 diabetes, prediabetes can be reversed. Making small changes to your everyday like can be enough to delay and even prevent type 2 diabetes. – Take It Back flyer excerpt.

Though the message that prediabetes is reversible is intended to empower people to make changes and take control of their health and to counter fatalism (I’m going to get diabetes anyway, so why make changes), it is possible that the message has had the unintended effect of reducing concern because the condition is reversible.

In order to improve the effectiveness of the campaign, we recommend further message testing via intercept interviews in the Kansas City and St. Louis metro areas to illuminate some of the interesting research findings regarding concern for risk. It is likely that message testing could reveal some simple alterations that could enhance the effect of the campaign. Though there was some initial message testing prior to the launch of the campaign, the process was limited due to grant deadlines.

In addition to further testing of Take It Back campaign materials, it might be advantageous to do some local testing of CDC materials to better discern the effect of their materials and see if there is any cross-over effect with the Take It Back campaign.

Centers for Disease Control and Prevention, National Center for Health Statistics, Division of Health Interview Statistics, data from the National Health Interview Survey. Statistical analysis by the Centers for Disease Control and Prevention, National Center for Chronic Disease Prevention and Health Promotion, Division of Diabetes Translation.

Madden, M., (2013, May 29) Pew Research Center, Internet and Technology, Technology use by different income groups. Presentation retrieved from http://www.pewinternet.org/2013/05/29/technology-use-by-different-income-groups/
APPENDIX

Age_Group Age 4 Groups * Wave Crosstabulation

<table>
<thead>
<tr>
<th>Age_Group Age 4 Groups</th>
<th>Wave</th>
<th>Count</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>Total</th>
<th>% within Age_Group Age 4 Groups</th>
<th>% within Wave</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00 18-24</td>
<td></td>
<td>Count</td>
<td>81</td>
<td>56</td>
<td>88</td>
<td>225</td>
<td>36.0%</td>
<td>11.0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within Age_Group Age 4 Groups</td>
<td></td>
<td></td>
<td></td>
<td>100.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within Wave</td>
<td></td>
<td></td>
<td></td>
<td>24.9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within Wave</td>
<td></td>
<td></td>
<td></td>
<td>39.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.00 25-44</td>
<td></td>
<td>Count</td>
<td>185</td>
<td>186</td>
<td>238</td>
<td>609</td>
<td>30.4%</td>
<td>25.2%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within Age_Group Age 4 Groups</td>
<td></td>
<td></td>
<td></td>
<td>100.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within Wave</td>
<td></td>
<td></td>
<td></td>
<td>30.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within Wave</td>
<td></td>
<td></td>
<td></td>
<td>39.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.00 45-64</td>
<td></td>
<td>Count</td>
<td>298</td>
<td>321</td>
<td>237</td>
<td>856</td>
<td>34.8%</td>
<td>40.5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within Age_Group Age 4 Groups</td>
<td></td>
<td></td>
<td></td>
<td>100.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within Wave</td>
<td></td>
<td></td>
<td></td>
<td>37.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within Wave</td>
<td></td>
<td></td>
<td></td>
<td>27.7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.00 65-90</td>
<td></td>
<td>Count</td>
<td>171</td>
<td>198</td>
<td>217</td>
<td>586</td>
<td>29.2%</td>
<td>23.3%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within Age_Group Age 4 Groups</td>
<td></td>
<td></td>
<td></td>
<td>100.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within Wave</td>
<td></td>
<td></td>
<td></td>
<td>33.8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within Wave</td>
<td></td>
<td></td>
<td></td>
<td>37.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>Count</td>
<td>735</td>
<td>761</td>
<td>780</td>
<td>2276</td>
<td>32.3%</td>
<td>100.0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within Age_Group Age 4 Groups</td>
<td></td>
<td></td>
<td></td>
<td>100.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within Wave</td>
<td></td>
<td></td>
<td></td>
<td>33.4%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Q10_edu Education * Wave Crosstabulation

<table>
<thead>
<tr>
<th>Q10_edu Education</th>
<th>Wave</th>
<th>Count</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>Total</th>
<th>% within Q10_edu Education</th>
<th>% within Wave</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 No high school diploma or GED</td>
<td></td>
<td>Count</td>
<td>60</td>
<td>52</td>
<td>52</td>
<td>164</td>
<td>36.6%</td>
<td>8.1%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within Q10_edu Education</td>
<td></td>
<td></td>
<td></td>
<td>100.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within Wave</td>
<td></td>
<td></td>
<td></td>
<td>31.7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 High school diploma or GED</td>
<td></td>
<td>Count</td>
<td>199</td>
<td>210</td>
<td>188</td>
<td>597</td>
<td>33.3%</td>
<td>26.9%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within Q10_edu Education</td>
<td></td>
<td></td>
<td></td>
<td>100.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within Wave</td>
<td></td>
<td></td>
<td></td>
<td>35.2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Some college, but did not graduate</td>
<td></td>
<td>Count</td>
<td>235</td>
<td>219</td>
<td>220</td>
<td>674</td>
<td>34.9%</td>
<td>31.8%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within Q10_edu Education</td>
<td></td>
<td></td>
<td></td>
<td>100.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within Wave</td>
<td></td>
<td></td>
<td></td>
<td>32.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 College degree</td>
<td></td>
<td>Count</td>
<td>156</td>
<td>189</td>
<td>197</td>
<td>542</td>
<td>31.8%</td>
<td>34.9%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within Q10_edu Education</td>
<td></td>
<td></td>
<td></td>
<td>100.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within Wave</td>
<td></td>
<td></td>
<td></td>
<td>28.6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Postgraduate or professional degree</td>
<td>% within Q10_edu Education</td>
<td>% within Wave</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>-----------------------------</td>
<td>--------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Count</td>
<td>28.7%</td>
<td>21.1%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% within Q10_edu Education</td>
<td>30.6%</td>
<td>24.7%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% within Wave</td>
<td>40.6%</td>
<td>25.2%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100.0%</td>
<td>100.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Q1B_heard_of_camp Heard of take it back campaign</th>
<th>% within Q10_edu Education</th>
<th>% within Wave</th>
</tr>
</thead>
<tbody>
<tr>
<td>Count</td>
<td>28.7%</td>
<td>21.1%</td>
</tr>
<tr>
<td>% within Q10_edu Education</td>
<td>30.6%</td>
<td>24.7%</td>
</tr>
<tr>
<td>% within Wave</td>
<td>40.6%</td>
<td>25.2%</td>
</tr>
<tr>
<td>Total</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Each subscript letter denotes a subset of Wave categories whose column proportions do not differ significantly from each other at the .05 level.

<table>
<thead>
<tr>
<th>Q1C_heard_of_dpp Heard about prediabetes prevention programs</th>
<th>% within Q10_edu Education</th>
<th>% within Wave</th>
</tr>
</thead>
<tbody>
<tr>
<td>Count</td>
<td>28.7%</td>
<td>21.1%</td>
</tr>
<tr>
<td>% within Q10_edu Education</td>
<td>30.6%</td>
<td>24.7%</td>
</tr>
<tr>
<td>% within Wave</td>
<td>40.6%</td>
<td>25.2%</td>
</tr>
<tr>
<td>Total</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Each subscript letter denotes a subset of Wave categories whose column proportions do not differ significantly from each other at the .05 level.
Crosstab

<table>
<thead>
<tr>
<th>Q1D_concern_for_risk Concerned about risk of prediabetes</th>
<th>Wave</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Yes Count</td>
<td></td>
<td>354<sub>a</sub></td>
<td>339<sub>a,b</sub></td>
<td>303<sub>b</sub></td>
<td>996</td>
</tr>
<tr>
<td>% within Wave</td>
<td></td>
<td>50.4%</td>
<td>46.6%</td>
<td>42.2%</td>
<td>46.3%</td>
</tr>
<tr>
<td>2 No Count</td>
<td></td>
<td>303<sub>a</sub></td>
<td>329<sub>a,b</sub></td>
<td>354<sub>b</sub></td>
<td>986</td>
</tr>
<tr>
<td>% within Wave</td>
<td></td>
<td>43.1%</td>
<td>45.2%</td>
<td>49.3%</td>
<td>45.9%</td>
</tr>
<tr>
<td>3 Not sure Count</td>
<td></td>
<td>46<sub>a</sub></td>
<td>60<sub>a</sub></td>
<td>167</td>
<td></td>
</tr>
<tr>
<td>% within Wave</td>
<td></td>
<td>6.5%</td>
<td>8.2%</td>
<td>8.5%</td>
<td>7.8%</td>
</tr>
<tr>
<td>Total Count</td>
<td></td>
<td>703</td>
<td>728</td>
<td>718</td>
<td>2149</td>
</tr>
<tr>
<td>% within Wave</td>
<td></td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Each subscript letter denotes a subset of Wave categories whose column proportions do not differ significantly from each other at the .05 level.

Crosstab

<table>
<thead>
<tr>
<th>Q1E_hcp_told Health care provider told you that you have prediabetes or borderline diabetes</th>
<th>Wave</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Yes Count</td>
<td></td>
<td>119<sub>a</sub></td>
<td>115<sub>a</sub></td>
<td>115<sub>a</sub></td>
<td>349</td>
</tr>
<tr>
<td>% within Wave</td>
<td></td>
<td>16.5%</td>
<td>15.3%</td>
<td>15.7%</td>
<td>15.8%</td>
</tr>
<tr>
<td>2 No Count</td>
<td></td>
<td>588<sub>a</sub></td>
<td>628<sub>a</sub></td>
<td>598<sub>a</sub></td>
<td>1814</td>
</tr>
<tr>
<td>% within Wave</td>
<td></td>
<td>81.6%</td>
<td>83.5%</td>
<td>81.5%</td>
<td>82.2%</td>
</tr>
<tr>
<td>3 Not sure Count</td>
<td></td>
<td>14<sub>a,b</sub></td>
<td>9<sub>b</sub></td>
<td>21<sub>a</sub></td>
<td>44</td>
</tr>
<tr>
<td>% within Wave</td>
<td></td>
<td>1.9%</td>
<td>1.2%</td>
<td>2.9%</td>
<td>2.0%</td>
</tr>
<tr>
<td>Total Count</td>
<td></td>
<td>721</td>
<td>752</td>
<td>734</td>
<td>2207</td>
</tr>
<tr>
<td>% within Wave</td>
<td></td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Each subscript letter denotes a subset of Wave categories whose column proportions do not differ significantly from each other at the .05 level.

Crosstab

<table>
<thead>
<tr>
<th>Q1F_hcp_explained_risk Health care provider explained your risk for type 2 diabetes</th>
<th>Wave</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Yes Count</td>
<td></td>
<td>243<sub>a</sub></td>
<td>247<sub>a</sub></td>
<td>260<sub>a</sub></td>
<td>750</td>
</tr>
<tr>
<td>% within Wave</td>
<td></td>
<td>33.4%</td>
<td>33.0%</td>
<td>36.0%</td>
<td>34.1%</td>
</tr>
<tr>
<td>2 No Count</td>
<td></td>
<td>450<sub>a</sub></td>
<td>473<sub>a</sub></td>
<td>426<sub>a</sub></td>
<td>1349</td>
</tr>
<tr>
<td>% within Wave</td>
<td></td>
<td>61.9%</td>
<td>63.2%</td>
<td>58.9%</td>
<td>61.3%</td>
</tr>
<tr>
<td>3 Not sure Count</td>
<td></td>
<td>34<sub>a</sub></td>
<td>29<sub>a</sub></td>
<td>37<sub>a</sub></td>
<td>100</td>
</tr>
<tr>
<td>% within Wave</td>
<td></td>
<td>4.7%</td>
<td>3.9%</td>
<td>5.1%</td>
<td>4.5%</td>
</tr>
<tr>
<td>Total Count</td>
<td></td>
<td>727</td>
<td>749</td>
<td>723</td>
<td>2199</td>
</tr>
<tr>
<td>% within Wave</td>
<td></td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>
Each subscript letter denotes a subset of Wave categories whose column proportions do not differ significantly from each other at the .05 level.

Crosstab

<table>
<thead>
<tr>
<th>Q1G_know_diff Know difference between prediabetes and type 2 diabetes</th>
<th>1 Yes</th>
<th>2 No</th>
<th>3 Not sure</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Count</td>
<td>229<sub>a</sub></td>
<td>443<sub>a</sub></td>
<td>61<sub>a</sub></td>
<td>760</td>
</tr>
<tr>
<td>% within Wave</td>
<td>31.2%</td>
<td>60.4%</td>
<td>8.3%</td>
<td>34.3%</td>
</tr>
<tr>
<td>Q1J_can_find_dpp Know where to find a National Diabetes Prevention Program in community or online</td>
<td>1 Yes</td>
<td>2 No</td>
<td>3 Not sure</td>
<td>Total</td>
</tr>
<tr>
<td>Count</td>
<td>258<sub>a</sub></td>
<td>432<sub>a</sub></td>
<td>39<sub>a</sub></td>
<td>794</td>
</tr>
<tr>
<td>% within Wave</td>
<td>35.4%</td>
<td>59.3%</td>
<td>5.3%</td>
<td>35.9%</td>
</tr>
</tbody>
</table>

Each subscript letter denotes a subset of Wave categories whose column proportions do not differ significantly from each other at the .05 level.
Each subscript letter denotes a subset of Wave categories whose column proportions do not differ significantly from each other at the .05 level.

Crosstab

<table>
<thead>
<tr>
<th>Q2_has_diab One in ten people in the US have diabetes</th>
<th>Wave</th>
<th></th>
<th></th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 False</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Count</td>
<td>92(_a, b)</td>
<td>87(_b)</td>
<td>112(_a)</td>
<td>291</td>
</tr>
<tr>
<td>% within Wave</td>
<td>12.8%</td>
<td>11.7%</td>
<td>15.4%</td>
<td>13.3%</td>
</tr>
<tr>
<td>1 True</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Count</td>
<td>625(_a, b)</td>
<td>655(_b)</td>
<td>617(_a)</td>
<td>1897</td>
</tr>
<tr>
<td>% within Wave</td>
<td>87.2%</td>
<td>88.3%</td>
<td>84.6%</td>
<td>86.7%</td>
</tr>
<tr>
<td>Total</td>
<td>717</td>
<td>742</td>
<td>729</td>
<td>2188</td>
</tr>
<tr>
<td>% within Wave</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Each subscript letter denotes a subset of Wave categories whose column proportions do not differ significantly from each other at the .05 level.

Crosstab

<table>
<thead>
<tr>
<th>Q5Bnew_tv_show</th>
<th>Wave</th>
<th></th>
<th></th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Count</td>
<td>375(_a)</td>
<td>434(_b)</td>
<td>436(_b)</td>
<td>1245</td>
</tr>
<tr>
<td>% within Wave</td>
<td>51.2%</td>
<td>57.9%</td>
<td>59.2%</td>
<td>56.1%</td>
</tr>
<tr>
<td>2.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Count</td>
<td>121(_a)</td>
<td>115(_a)</td>
<td>139(_a)</td>
<td>375</td>
</tr>
<tr>
<td>% within Wave</td>
<td>16.5%</td>
<td>15.3%</td>
<td>18.9%</td>
<td>16.9%</td>
</tr>
<tr>
<td>3.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Count</td>
<td>236(_a)</td>
<td>201(_b)</td>
<td>161(_c)</td>
<td>598</td>
</tr>
<tr>
<td>% within Wave</td>
<td>32.2%</td>
<td>26.8%</td>
<td>21.9%</td>
<td>27.0%</td>
</tr>
<tr>
<td>Total</td>
<td>732</td>
<td>750</td>
<td>736</td>
<td>2218</td>
</tr>
<tr>
<td>% within Wave</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Each subscript letter denotes a subset of Wave categories whose column proportions do not differ significantly from each other at the .05 level.
Crosstab

<table>
<thead>
<tr>
<th>Wave</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q5Dnew_art_in_newsmags</td>
<td>1.00</td>
<td>Count</td>
<td>272<sub>a</sub></td>
<td>329<sub>b</sub></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within Wave</td>
<td>37.5%</td>
<td>44.1%</td>
</tr>
<tr>
<td>2.00</td>
<td>Count</td>
<td>147<sub>a</sub></td>
<td>147<sub>a</sub></td>
<td>160<sub>a</sub></td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td>20.2%</td>
<td>19.7%</td>
<td>21.9%</td>
</tr>
<tr>
<td>3.00</td>
<td>Count</td>
<td>307<sub>a</sub></td>
<td>270<sub>b</sub></td>
<td>262<sub>b</sub></td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td>42.3%</td>
<td>36.2%</td>
<td>35.9%</td>
</tr>
<tr>
<td>Total</td>
<td>Count</td>
<td>726</td>
<td>746</td>
<td>729</td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Each subscript letter denotes a subset of Wave categories whose column proportions do not differ significantly from each other at the .05 level.

Crosstab

<table>
<thead>
<tr>
<th>Wave</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q5Enew_adv_in_newsmags</td>
<td>1.00</td>
<td>Count</td>
<td>272<sub>a</sub></td>
<td>325<sub>b</sub></td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td>37.3%</td>
<td>43.4%</td>
<td>42.2%</td>
</tr>
<tr>
<td>2.00</td>
<td>Count</td>
<td>146<sub>a</sub></td>
<td>150<sub>a</sub></td>
<td>145<sub>a</sub></td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td>20.0%</td>
<td>20.1%</td>
<td>19.5%</td>
</tr>
<tr>
<td>3.00</td>
<td>Count</td>
<td>312<sub>a</sub></td>
<td>273<sub>b</sub></td>
<td>284<sub>a,b</sub></td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td>42.7%</td>
<td>36.5%</td>
<td>38.3%</td>
</tr>
<tr>
<td>Total</td>
<td>Count</td>
<td>730</td>
<td>748</td>
<td>742</td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Each subscript letter denotes a subset of Wave categories whose column proportions do not differ significantly from each other at the .05 level.
Crosstab

<table>
<thead>
<tr>
<th>Wave</th>
<th>Q5Hnew_rad_news</th>
<th>Count</th>
<th>% within Wave</th>
<th>Wave</th>
<th>Q5Jnew_dr_off</th>
<th>Count</th>
<th>% within Wave</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.00</td>
<td>Count</td>
<td>341<sub>a</sub></td>
<td>46.7%</td>
<td>2.00</td>
<td>Count</td>
<td>117<sub>a</sub></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>359<sub>a</sub></td>
<td>47.7%</td>
<td></td>
<td>149<sub>a</sub></td>
<td>19.8%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>367<sub>a</sub></td>
<td>49.5%</td>
<td></td>
<td>149<sub>b</sub></td>
<td>20.1%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1067</td>
<td>48.0%</td>
<td></td>
<td>415</td>
<td>18.7%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within Wave</td>
<td>46.7%</td>
<td>47.7%</td>
<td>% within Wave</td>
<td>16.0%</td>
<td>19.8%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>49.5%</td>
<td>48.0%</td>
<td></td>
<td>20.1%</td>
<td>18.7%</td>
</tr>
<tr>
<td>2</td>
<td>2.00</td>
<td>Count</td>
<td>117<sub>a</sub></td>
<td>16.0%</td>
<td>3.00</td>
<td>Count</td>
<td>272<sub>a</sub></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>149<sub>a</sub></td>
<td>32.5%</td>
<td></td>
<td>245<sub>a</sub></td>
<td>30.4%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>149<sub>b</sub></td>
<td>30.4%</td>
<td></td>
<td>225<sub>b</sub></td>
<td>33.4%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within Wave</td>
<td>16.0%</td>
<td>19.8%</td>
<td>% within Wave</td>
<td>37.3%</td>
<td>30.4%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>20.1%</td>
<td>18.7%</td>
<td></td>
<td>33.4%</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3.00</td>
<td>Count</td>
<td>272<sub>a</sub></td>
<td>37.3%</td>
<td></td>
<td>Count</td>
<td>730</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>245<sub>a</sub></td>
<td>32.5%</td>
<td></td>
<td>753</td>
<td>100.0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>225<sub>b</sub></td>
<td>30.4%</td>
<td></td>
<td>741</td>
<td>100.0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within Wave</td>
<td>37.3%</td>
<td>32.5%</td>
<td>% within Wave</td>
<td>30.4%</td>
<td>33.4%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>33.4%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Count | 730 | 753 | 741 | 2224

% within Wave | 100.0% | 100.0% | 100.0% | 100.0%

Each subscript letter denotes a subset of Wave categories whose column proportions do not differ significantly from each other at the .05 level.

Crosstab

<table>
<thead>
<tr>
<th>Wave</th>
<th>Q5Jnew_dr_off</th>
<th>Count</th>
<th>% within Wave</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.00</td>
<td>Count</td>
<td>206<sub>a</sub></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>239<sub>a</sub></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within Wave</td>
<td>28.4%</td>
</tr>
<tr>
<td></td>
<td>2.00</td>
<td>Count</td>
<td>119<sub>a</sub></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>145<sub>a</sub></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within Wave</td>
<td>16.4%</td>
</tr>
<tr>
<td></td>
<td>3.00</td>
<td>Count</td>
<td>400<sub>a</sub></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>369<sub>b</sub></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within Wave</td>
<td>55.2%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>769</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Count</td>
<td>725</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>753</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1478</td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td></td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Each subscript letter denotes a subset of Wave categories whose column proportions do not differ significantly from each other at the .05 level.

Q1A_heard_about_predia Heard about prediabetes * Wave * Q7_gend Gender Crosstabulation

<table>
<thead>
<tr>
<th>Q7_gender Gender</th>
<th>Wave</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Male</td>
<td>Q1A_heard_about_predia Heard about prediabetes</td>
<td>1 Yes</td>
<td>Count</td>
<td>146<sub>a</sub></td>
<td>195<sub>a</sub></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within Wave</td>
<td>49.7%</td>
<td>52.8%</td>
<td>61.6%</td>
</tr>
<tr>
<td></td>
<td>2 No</td>
<td>Count</td>
<td>128<sub>a</sub></td>
<td>150<sub>a</sub></td>
<td>115<sub>b</sub></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within Wave</td>
<td>43.5%</td>
<td>40.7%</td>
<td>34.5%</td>
</tr>
<tr>
<td></td>
<td>3 Not sure</td>
<td>Count</td>
<td>20<sub>a</sub></td>
<td>24<sub>a</sub></td>
<td>13<sub>a</sub></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within Wave</td>
<td>6.8%</td>
<td>6.5%</td>
<td>3.9%</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Count</td>
<td>294</td>
<td>369</td>
<td>333</td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>Total</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>1 Female</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q1A_heard_about_predia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heard about prediabetes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Yes</td>
<td>100.0%</td>
<td>274<sub>a</sub></td>
<td>278<sub>b</sub></td>
<td>307<sub>b</sub></td>
<td>859</td>
</tr>
<tr>
<td>% within Wave</td>
<td>62.6%</td>
<td>72.6%</td>
<td>76.2%</td>
<td>70.2%</td>
<td></td>
</tr>
<tr>
<td>2 No</td>
<td>100.0%</td>
<td>142<sub>a</sub></td>
<td>90<sub>b</sub></td>
<td>79<sub>b</sub></td>
<td>311</td>
</tr>
<tr>
<td>% within Wave</td>
<td>32.4%</td>
<td>23.5%</td>
<td>19.6%</td>
<td>25.4%</td>
<td></td>
</tr>
<tr>
<td>3 Not sure</td>
<td>100.0%</td>
<td>22<sub>a</sub></td>
<td>15<sub>a</sub></td>
<td>17<sub>a</sub></td>
<td>54</td>
</tr>
<tr>
<td>% within Wave</td>
<td>5.0%</td>
<td>3.9%</td>
<td>4.2%</td>
<td>4.4%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100.0%</td>
<td>438</td>
<td>383</td>
<td>403</td>
<td>1224</td>
</tr>
<tr>
<td>3 Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q1A_heard_about_predia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heard about prediabetes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 No</td>
<td>100.0%</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>% within Wave</td>
<td>100.0%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100.0%</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>100.0%</td>
<td>732</td>
<td>753</td>
<td>736</td>
<td>2221</td>
</tr>
</tbody>
</table>

Each subscript letter denotes a subset of Wave categories whose column proportions do not differ significantly from each other at the .05 level.

Q1G_known_diff Know difference between prediabetes and type 2 diabetes * Wave * Q7_gend
Gender Crosstabulation

<table>
<thead>
<tr>
<th>Q7_gend Gender</th>
<th>Wave</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Male</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q1G_known_diff Know difference between prediabetes and type 2 diabetes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Count</td>
<td>87<sub>a</sub></td>
<td>89<sub>b</sub></td>
<td>111<sub>a</sub></td>
<td>287</td>
</tr>
<tr>
<td>% within Wave</td>
<td>29.6%</td>
<td>24.3%</td>
<td>33.5%</td>
<td>29.0%</td>
</tr>
<tr>
<td>2 No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Count</td>
<td>185<sub>a</sub></td>
<td>245<sub>b</sub></td>
<td>194<sub>a</sub></td>
<td>624</td>
</tr>
<tr>
<td>% within Wave</td>
<td>62.9%</td>
<td>66.9%</td>
<td>58.6%</td>
<td>63.0%</td>
</tr>
<tr>
<td>3 Not sure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Count</td>
<td>22<sub>a</sub></td>
<td>32<sub>a</sub></td>
<td>26<sub>a</sub></td>
<td>80</td>
</tr>
<tr>
<td>% within Wave</td>
<td>7.5%</td>
<td>8.7%</td>
<td>7.9%</td>
<td>8.1%</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Count</td>
<td>294</td>
<td>366</td>
<td>331</td>
<td>991</td>
</tr>
<tr>
<td>1 Female</td>
<td>Q1G_know_diff</td>
<td>Know difference between prediabetes and type 2 diabetes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Yes</td>
<td>Count</td>
<td>142a 150b 178b 470</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% within Wave</td>
<td>32.5% 39.9% 44.2% 38.7%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 No</td>
<td>Count</td>
<td>256a 181b 186b 623</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% within Wave</td>
<td>58.6% 48.1% 46.2% 51.2%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Not sure</td>
<td>Count</td>
<td>39a 45a 39a 123</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% within Wave</td>
<td>8.9% 12.0% 9.7% 10.1%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total

Count | 437 376 403 1216
% within Wave | 100.0% 100.0% 100.0% 100.0%

3 Other

Q1G_know_diff | Know difference between prediabetes and type 2 diabetes |
2 No | Count | 1 1 |
% within Wave | 100.0% 100.0% |

Total

Count | 1 1
% within Wave | 100.0% 100.0%

Total

Q1G_know_diff | Know difference between prediabetes and type 2 diabetes |
1 Yes | Count | 229a 239a 289b 757 |
% within Wave | 31.3% 32.2% 39.4% 34.3% |
2 No | Count | 441a 427a 380b 1248 |
% within Wave | 60.3% 57.5% 51.8% 56.5% |
3 Not sure | Count | 61a 77a 65a 203 |
% within Wave | 8.3% 10.4% 8.9% 9.2% |

Total

Count | 731 743 734 2208 |
% within Wave | 100.0% 100.0% 100.0% 100.0%

Each subscript letter denotes a subset of Wave categories whose column proportions do not differ significantly from each other at the .05 level.

Q1D_concern_for_risk Concerned about risk of prediabetes * Wave * Q7_gend Gender Crosstabulation

<table>
<thead>
<tr>
<th>Q7_gend Gender</th>
<th>Wave</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>0 Male</td>
<td></td>
</tr>
<tr>
<td>Q1D_concern_for_risk</td>
<td>Concerned about risk of prediabetes</td>
</tr>
<tr>
<td>1 Yes</td>
<td>Count</td>
</tr>
<tr>
<td>% within Wave</td>
<td>52.9% 49.1% 43.7% 48.4%</td>
</tr>
<tr>
<td>2 No</td>
<td>Count</td>
</tr>
<tr>
<td>% within Wave</td>
<td>39.3% 41.5% 47.1% 42.7%</td>
</tr>
<tr>
<td>3 Not sure</td>
<td>Count</td>
</tr>
<tr>
<td>% within Wave</td>
<td>7.9% 9.4% 9.3% 8.9%</td>
</tr>
</tbody>
</table>

Total

Count | 280 352 323 955 |
% within Wave | 100.0% 100.0% 100.0% 100.0%
Q1D_concern_for_risk

Concerned about risk of prediabetes

<table>
<thead>
<tr>
<th>Wave</th>
<th>Count</th>
<th>% within Wave</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Yes</td>
<td>205<sub>a</sub> 162<sub>b</sub> 162<sub>b</sub> 529</td>
<td>48.7% 43.5% 41.1% 44.6%</td>
</tr>
<tr>
<td>2 No</td>
<td>192<sub>a</sub> 183<sub>a</sub> 201<sub>a</sub> 576</td>
<td>45.6% 49.2% 51.0% 48.5%</td>
</tr>
<tr>
<td>3 Not sure</td>
<td>24<sub>a</sub> 27<sub>a</sub> 31<sub>a</sub> 82</td>
<td>5.7% 7.3% 7.9% 6.9%</td>
</tr>
</tbody>
</table>

Total

<table>
<thead>
<tr>
<th>Count</th>
<th>% within Wave</th>
</tr>
</thead>
<tbody>
<tr>
<td>421</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Each subscript letter denotes a subset of Wave categories whose column proportions do not differ significantly from each other at the .05 level.

Q1A_heard_about_predia

Heard about prediabetes

<table>
<thead>
<tr>
<th>Race_target Race black Hispanic only</th>
<th>Wave</th>
<th>Count</th>
<th>% within Wave</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Yes</td>
<td>Total</td>
<td>329<sub>a</sub> 325<sub>a</sub> 376<sub>b</sub> 1030</td>
<td>56.2% 59.7% 66.8% 60.9%</td>
</tr>
<tr>
<td>2 No</td>
<td></td>
<td>223<sub>a</sub> 191<sub>a</sub> 163<sub>b</sub> 577</td>
<td>38.1% 35.1% 29.0% 34.1%</td>
</tr>
<tr>
<td>3 Not sure</td>
<td></td>
<td>33<sub>a</sub> 28<sub>a</sub> 24<sub>a</sub> 85</td>
<td>5.6% 5.1% 4.3% 5.0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Count</th>
<th>% within Wave</th>
</tr>
</thead>
<tbody>
<tr>
<td>585</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Crosstabulation
<table>
<thead>
<tr>
<th>Race_target Race black Hispanic only</th>
<th>Wave</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1B_heard_of_camp Heard of take it back campaign</td>
<td>1 Yes</td>
<td>54_a</td>
</tr>
<tr>
<td>amp Heard of take it back</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Each subscript letter denotes a subset of Wave categories whose column proportions do not differ significantly from each other at the .05 level.
<table>
<thead>
<tr>
<th>campaign</th>
<th>% within Wave</th>
<th>2 No</th>
<th>3 Not sure</th>
<th>1677</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Count</td>
<td>Count</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>495(_a)</td>
<td>459(_a)</td>
<td>460(_a)</td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td>9.4%</td>
<td>10.9%</td>
<td>11.9%</td>
</tr>
<tr>
<td>3 Not sure</td>
<td>% within Wave</td>
<td>85.8%</td>
<td>85.2%</td>
<td>82.0%</td>
</tr>
<tr>
<td></td>
<td>Count</td>
<td>28(_a)</td>
<td>21(_a)</td>
<td>34(_a)</td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td>4.9%</td>
<td>3.9%</td>
<td>6.1%</td>
</tr>
<tr>
<td>Total</td>
<td>Count</td>
<td>577</td>
<td>539</td>
<td>561</td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

2.00 Hispanic

<table>
<thead>
<tr>
<th>Q1B_heard_of_take it back campaign</th>
<th>% within Wave</th>
<th>2 No</th>
<th>3 Not sure</th>
<th>1677</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Yes</td>
<td>% within Wave</td>
<td>0.0%</td>
<td>16.7%</td>
<td>9.1%</td>
</tr>
<tr>
<td>Count</td>
<td></td>
<td>0(_a)</td>
<td>7(_b)</td>
<td>2(_{a,b})</td>
</tr>
<tr>
<td>2 No</td>
<td>% within Wave</td>
<td>96.2%</td>
<td>81.0%</td>
<td>90.9%</td>
</tr>
<tr>
<td>Count</td>
<td></td>
<td>25(_a)</td>
<td>34(_a)</td>
<td>20(_a)</td>
</tr>
<tr>
<td>3 Not sure</td>
<td>% within Wave</td>
<td>3.8%</td>
<td>2.4%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Count</td>
<td></td>
<td>1(_a)</td>
<td>1(_a)</td>
<td>0(_a)</td>
</tr>
<tr>
<td>Total</td>
<td>% within Wave</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>Count</td>
<td></td>
<td>26</td>
<td>42</td>
<td>22</td>
</tr>
</tbody>
</table>

3.00 Other races

<table>
<thead>
<tr>
<th>Q1B_heard_of_take it back campaign</th>
<th>% within Wave</th>
<th>2 No</th>
<th>3 Not sure</th>
<th>1677</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Yes</td>
<td>% within Wave</td>
<td>5.6%</td>
<td>8.2%</td>
<td>9.2%</td>
</tr>
<tr>
<td>Count</td>
<td></td>
<td>7(_a)</td>
<td>14(_a)</td>
<td>14(_a)</td>
</tr>
<tr>
<td>2 No</td>
<td>% within Wave</td>
<td>87.1%</td>
<td>85.3%</td>
<td>84.9%</td>
</tr>
<tr>
<td>Count</td>
<td></td>
<td>108(_a)</td>
<td>145(_a)</td>
<td>129(_a)</td>
</tr>
<tr>
<td>3 Not sure</td>
<td>% within Wave</td>
<td>7.3%</td>
<td>6.5%</td>
<td>5.9%</td>
</tr>
<tr>
<td>Count</td>
<td></td>
<td>9(_a)</td>
<td>11(_a)</td>
<td>9(_a)</td>
</tr>
<tr>
<td>Total</td>
<td>% within Wave</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>Count</td>
<td></td>
<td>124</td>
<td>170</td>
<td>152</td>
</tr>
</tbody>
</table>

Total: 1677
<table>
<thead>
<tr>
<th></th>
<th>Q1B_heard_of_campaign Heard of take it back campaign</th>
<th>1 Yes</th>
<th>Count</th>
<th>% within Wave</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>61a</td>
<td>80a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>83a</td>
<td>224</td>
</tr>
<tr>
<td>Q1B_heard_of_campaign</td>
<td>Yes</td>
<td>8.4%</td>
<td>10.7%</td>
<td>11.3%</td>
</tr>
<tr>
<td>Q1B_heard_of_campaign</td>
<td>No</td>
<td>86.4%</td>
<td>85.0%</td>
<td>82.9%</td>
</tr>
<tr>
<td>Q1B_heard_of_campaign</td>
<td>Not sure</td>
<td>5.2%</td>
<td>4.4%</td>
<td>5.9%</td>
</tr>
</tbody>
</table>

Each subscript letter denotes a subset of Wave categories whose column proportions do not differ significantly from each other at the .05 level.

Q1G_know_diff Know difference between prediabetes and type 2 diabetes * Wave * Race_target Race

<table>
<thead>
<tr>
<th>Race_target Race</th>
<th>Q1G_know_diff Know difference between prediabetes and type 2 diabetes</th>
<th>Wave</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00 Black</td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>174a</td>
</tr>
<tr>
<td>1 Yes</td>
<td>Count</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>29.8%</td>
</tr>
<tr>
<td>2 No</td>
<td>Count</td>
<td></td>
<td>362a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>62.1%</td>
</tr>
<tr>
<td>3 Not sure</td>
<td>Count</td>
<td></td>
<td>47a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8.1%</td>
</tr>
<tr>
<td>Total</td>
<td>Count</td>
<td></td>
<td>583</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100.0%</td>
</tr>
</tbody>
</table>

2.00 Hispanic

<table>
<thead>
<tr>
<th>Race_target Race</th>
<th>Q1G_know_diff Know difference between prediabetes and type 2 diabetes</th>
<th>Wave</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1 Yes</td>
<td>Count</td>
<td></td>
<td>7a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>26.9%</td>
</tr>
<tr>
<td>2 No</td>
<td>Count</td>
<td></td>
<td>17a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>65.4%</td>
</tr>
<tr>
<td>3 Not sure</td>
<td>Count</td>
<td></td>
<td>2a, b</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7.7%</td>
</tr>
<tr>
<td>Total</td>
<td>Count</td>
<td></td>
<td>26</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>100.0%</td>
</tr>
</tbody>
</table>

3.00 Other races

<table>
<thead>
<tr>
<th>Race_target Race</th>
<th>Q1G_know_diff Know difference between prediabetes and type 2 diabetes</th>
<th>Wave</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1 Yes</td>
<td>Count</td>
<td></td>
<td>48a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>38.7%</td>
</tr>
<tr>
<td>2 No</td>
<td>Count</td>
<td></td>
<td>64a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>51.6%</td>
</tr>
<tr>
<td>3 Not sure</td>
<td>Count</td>
<td></td>
<td>12a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>9.7%</td>
</tr>
</tbody>
</table>
Q1G_know_diff

<table>
<thead>
<tr>
<th>Know difference between prediabetes and type 2 diabetes</th>
<th>Total</th>
<th>Count</th>
<th>% within Wave</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Yes</td>
<td></td>
<td>124</td>
<td>100.0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>169</td>
<td>100.0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>153</td>
<td>100.0%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>446</td>
<td>100.0%</td>
</tr>
<tr>
<td>2 No</td>
<td></td>
<td>229a</td>
<td>31.2%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>242a</td>
<td>32.4%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>289b</td>
<td>39.3%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>760</td>
<td>34.3%</td>
</tr>
<tr>
<td>3 Not sure</td>
<td></td>
<td>61a</td>
<td>8.3%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>77a</td>
<td>10.3%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>65a</td>
<td>8.8%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>203</td>
<td>9.2%</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>733</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Each subscript letter denotes a subset of Wave categories whose column proportions do not differ significantly from each other at the .05 level.

Q1D_concern_for_risk

<table>
<thead>
<tr>
<th>Concerned about risk of prediabetes * Wave * Race_target Race black Hispanic only Crosstabulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Race_target</td>
</tr>
<tr>
<td>1.00 Black</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2.00 Hispanic</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3.00 Other races</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Q1D_concern_for_risk</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>% within Wave</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>% within Wave</td>
</tr>
<tr>
<td>Count</td>
</tr>
<tr>
<td>% within Wave</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>% within Wave</td>
</tr>
<tr>
<td>Count</td>
</tr>
<tr>
<td>% within Wave</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>% within Wave</td>
</tr>
</tbody>
</table>

Each subscript letter denotes a subset of Wave categories whose column proportions do not differ significantly from each other at the .05 level.

Q1A_heard_about_predia Heard about prediabetes * Wave * Age_Group Age 4 Groups Crosstabulation

<table>
<thead>
<tr>
<th>Age_Group Age 4 Groups</th>
<th>Wave</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00 18-24</td>
<td>Q1A_heard_about_predia Heard about prediabetes</td>
<td>1 Yes</td>
<td>Count</td>
<td>36a</td>
<td>23a</td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td></td>
<td>44.4%</td>
<td>41.1%</td>
<td>56.3%</td>
</tr>
<tr>
<td>2 No</td>
<td>Count</td>
<td>40a</td>
<td>30a</td>
<td>32a</td>
<td>102</td>
</tr>
<tr>
<td>% within Wave</td>
<td></td>
<td>49.4%</td>
<td>53.6%</td>
<td>40.0%</td>
<td>47.0%</td>
</tr>
<tr>
<td>3 Not sure</td>
<td>Count</td>
<td>5a</td>
<td>3a</td>
<td>3a</td>
<td>11</td>
</tr>
<tr>
<td>% within Wave</td>
<td></td>
<td>6.2%</td>
<td>5.4%</td>
<td>3.8%</td>
<td>5.1%</td>
</tr>
<tr>
<td>Total</td>
<td>Count</td>
<td>81</td>
<td>56</td>
<td>80</td>
<td>217</td>
</tr>
<tr>
<td>% within Wave</td>
<td></td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>2.00 25-44</td>
<td>Q1A_heard_about_predia Heard about prediabetes</td>
<td>1 Yes</td>
<td>Count</td>
<td>94a</td>
<td>113a, b</td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td></td>
<td>51.4%</td>
<td>61.1%</td>
<td>66.0%</td>
</tr>
<tr>
<td>2 No</td>
<td>Count</td>
<td>78a</td>
<td>67a, b</td>
<td>62b</td>
<td>207</td>
</tr>
<tr>
<td>% within Wave</td>
<td></td>
<td>42.6%</td>
<td>36.2%</td>
<td>30.1%</td>
<td>36.1%</td>
</tr>
<tr>
<td>3 Not sure</td>
<td>Count</td>
<td>11a</td>
<td>5a</td>
<td>8a</td>
<td>24</td>
</tr>
<tr>
<td>% within Wave</td>
<td></td>
<td>6.0%</td>
<td>2.7%</td>
<td>3.9%</td>
<td>4.2%</td>
</tr>
<tr>
<td>Total</td>
<td>Count</td>
<td>183</td>
<td>185</td>
<td>206</td>
<td>574</td>
</tr>
<tr>
<td>% within Wave</td>
<td></td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>3.00 45-64</td>
<td>Q1A_heard_about_predia Heard about prediabetes</td>
<td>1 Yes</td>
<td>Count</td>
<td>176a</td>
<td>207a, b</td>
</tr>
<tr>
<td>% within Wave</td>
<td></td>
<td>59.3%</td>
<td>65.9%</td>
<td>73.1%</td>
<td>65.6%</td>
</tr>
</tbody>
</table>

Each subscript letter denotes a subset of Wave categories whose column proportions do not differ significantly from each other at the .05 level.
<table>
<thead>
<tr>
<th></th>
<th>Count</th>
<th>Wave 1</th>
<th>Wave 2</th>
<th>Wave 3</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 No</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Count</td>
<td>103</td>
<td>88</td>
<td>53</td>
<td>244</td>
<td></td>
</tr>
<tr>
<td>% within Wave</td>
<td>34.7%</td>
<td>28.0%</td>
<td>22.6%</td>
<td>28.9%</td>
<td></td>
</tr>
<tr>
<td>3 Not sure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Count</td>
<td>18</td>
<td>19</td>
<td>10</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>% within Wave</td>
<td>6.1%</td>
<td>6.1%</td>
<td>4.3%</td>
<td>5.6%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Count</td>
<td>297</td>
<td>314</td>
<td>234</td>
<td>845</td>
<td></td>
</tr>
<tr>
<td>% within Wave</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td></td>
</tr>
</tbody>
</table>

4.00 65+	Q1A_heard_about_predia				
Heard about prediabetes					
1 Yes					
Count	113	131	158	402	
% within Wave	68.5%	66.8%	75.2%	70.4%	
2 No					
Count	44	53	42	139	
% within Wave	26.7%	27.0%	20.0%	24.3%	
3 Not sure					
Count	8	12	10	30	
% within Wave	4.8%	6.1%	4.8%	5.3%	
Total					
Count	165	196	210	571	
% within Wave	100.0%	100.0%	100.0%	100.0%	

Each subscript letter denotes a subset of Wave categories whose column proportions do not differ significantly from each other at the .05 level.

Q1B_heard_of_camp Heard of take it back campaign * Wave * Age_Group Age 4 Groups

Crosstabulation

<table>
<thead>
<tr>
<th>Age_Group Age 4 Groups</th>
<th>Wave</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00 18-24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q1B_heard_of_camp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heard of take it back campaign</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Count</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>% within Wave</td>
<td>3.7%</td>
<td>7.1%</td>
</tr>
<tr>
<td>2 No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Count</td>
<td>71</td>
<td>49</td>
</tr>
<tr>
<td>% within Wave</td>
<td>87.7%</td>
<td>87.5%</td>
</tr>
<tr>
<td>3 Not sure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Count</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>% within Wave</td>
<td>8.6%</td>
<td>5.4%</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Count</td>
<td>81</td>
<td>56</td>
</tr>
<tr>
<td>% within Wave</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>Age Group</td>
<td>Q1B_heard_of_camp Heard of take it back campaign</td>
<td>Yes</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td>Count</td>
<td></td>
</tr>
<tr>
<td>2.00 25-44</td>
<td>1 Yes</td>
<td>20a</td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td>10.9%</td>
</tr>
<tr>
<td></td>
<td>2 No</td>
<td>156a</td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td>85.2%</td>
</tr>
<tr>
<td></td>
<td>3 Not sure</td>
<td>7a,b</td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td>3.8%</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>183</td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td>100.0%</td>
</tr>
<tr>
<td>3.00 45-64</td>
<td>1 Yes</td>
<td>24a</td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td>8.2%</td>
</tr>
<tr>
<td></td>
<td>2 No</td>
<td>259a</td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td>88.7%</td>
</tr>
<tr>
<td></td>
<td>3 Not sure</td>
<td>9a</td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td>3.1%</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>292</td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td>100.0%</td>
</tr>
<tr>
<td>4.00 65-90</td>
<td>1 Yes</td>
<td>13a</td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td>7.9%</td>
</tr>
<tr>
<td></td>
<td>2 No</td>
<td>136a</td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td>82.9%</td>
</tr>
<tr>
<td></td>
<td>3 Not sure</td>
<td>15a</td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td>9.1%</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>164</td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Each subscript letter denotes a subset of Wave categories whose column proportions do not differ significantly from each other at the .05 level.
Q1G_know_diff Know difference between prediabetes and type 2 diabetes * Wave * Age_Group Age 4

Groups Crosstabulation

<table>
<thead>
<tr>
<th>Age_Group Age 4 Groups</th>
<th>Wave</th>
<th>Count</th>
<th>% within Wave</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00 18-24</td>
<td>Q1G_know_diff Know difference between prediabetes and type 2 diabetes</td>
<td>1 Yes</td>
<td>25<sub>a</sub></td>
</tr>
<tr>
<td></td>
<td></td>
<td>% within Wave</td>
<td>33.9%</td>
</tr>
<tr>
<td></td>
<td>2 No</td>
<td>Count</td>
<td>50<sub>a</sub></td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td>64.3%</td>
<td>52.5%</td>
</tr>
<tr>
<td></td>
<td>3 Not sure</td>
<td>Count</td>
<td>6<sub>a,b</sub></td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td>1.8%</td>
<td>12.5%</td>
</tr>
<tr>
<td>Total</td>
<td>Count</td>
<td>81</td>
<td>100.0%</td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td>100.0%</td>
<td></td>
</tr>
</tbody>
</table>

2.00 25-44	Q1G_know_diff Know difference between prediabetes and type 2 diabetes	1 Yes	50_a	27.2%
	% within Wave	29.3%	40.5%	32.6%
	2 No	Count	123_a	66.8%
	% within Wave	61.4%	53.7%	60.4%
	3 Not sure	Count	11_a	6.0%
	% within Wave	9.2%	5.9%	7.0%
Total	Count	184	100.0%	
	% within Wave	100.0%		

3.00 45-64	Q1G_know_diff Know difference between prediabetes and type 2 diabetes	1 Yes	96_a	32.5%
	% within Wave	30.5%	42.3%	34.5%
	2 No	Count	177_a	60.0%
	% within Wave	56.2%	49.1%	55.6%
	3 Not sure	Count	22_a	7.5%
	% within Wave	13.3%	8.5%	9.9%
Total	Count	295	100.0%	
	% within Wave	100.0%		

4.00 65-90	Q1G_know_diff Know difference between prediabetes and type 2 diabetes	1 Yes	56_a	33.7%
	% within Wave	36.6%	36.1%	35.6%
	2 No	Count	89_a	53.6%
	% within Wave	54.1%	52.9%	53.5%
	3 Not sure	Count	21_a	12.7%
	% within Wave	9.3%	11.1%	10.9%
Total	Count	166	100.0%	
	% within Wave	100.0%		

<p>| Total | Q1G_know_diff Know difference between prediabetes and type 2 diabetes | 1 Yes | 227<sub>a</sub> | 31.3% |
| | % within Wave | 32.1% | 39.2% | 34.2% |</p>
<table>
<thead>
<tr>
<th>Age_Group Age 4 Groups</th>
<th>Q1D_concern_for_risk Concerned about risk of prediabetes * Wave * Age_Group Age 4 Groups Crosstabulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00 18-24</td>
<td></td>
</tr>
<tr>
<td>1 Yes</td>
<td>Count</td>
</tr>
<tr>
<td>% within Wave</td>
<td>Count</td>
</tr>
<tr>
<td>3 Not sure</td>
<td>Count</td>
</tr>
<tr>
<td>Total</td>
<td>Count</td>
</tr>
<tr>
<td>2.00 25-44</td>
<td></td>
</tr>
<tr>
<td>1 Yes</td>
<td>Count</td>
</tr>
<tr>
<td>% within Wave</td>
<td>Count</td>
</tr>
<tr>
<td>3 Not sure</td>
<td>Count</td>
</tr>
<tr>
<td>Total</td>
<td>Count</td>
</tr>
<tr>
<td>3.00 45-64</td>
<td></td>
</tr>
<tr>
<td>1 Yes</td>
<td>Count</td>
</tr>
<tr>
<td>% within Wave</td>
<td>Count</td>
</tr>
<tr>
<td>3 Not sure</td>
<td>Count</td>
</tr>
<tr>
<td>Total</td>
<td>Count</td>
</tr>
</tbody>
</table>

Each subscript letter denotes a subset of Wave categories whose column proportions do not differ significantly from each other at the .05 level.
<table>
<thead>
<tr>
<th>4.00 65+</th>
<th>Q1D_concern_for_risk</th>
<th>1 Yes</th>
<th>Count</th>
<th>87ₐ</th>
<th>86ₐ</th>
<th>91ₐ</th>
<th>264</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concerned about risk of prediabetes</td>
<td>% within Wave</td>
<td>55.1%</td>
<td>46.2%</td>
<td>45.0%</td>
<td>48.4%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 No</td>
<td>Count</td>
<td>56ₐ</td>
<td>86ₐ</td>
<td>87ₐ,ₐ</td>
<td>229</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% within Wave</td>
<td>35.4%</td>
<td>46.2%</td>
<td>43.1%</td>
<td>41.9%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Not sure</td>
<td>Count</td>
<td>15ₐ</td>
<td>1ₐ</td>
<td>2ₐ</td>
<td>53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% within Wave</td>
<td>9.5%</td>
<td>7.5%</td>
<td>11.9%</td>
<td>9.7%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>Count</td>
<td>158</td>
<td>1ₐ</td>
<td>2ₐ</td>
<td>546</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% within Wave</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Each subscript letter denotes a subset of Wave categories whose column proportions do not differ significantly from each other at the .05 level.

Q1A_heard_about_predia Heard about prediabetes * Wave * Q10_edu Education Crosstabulation

<table>
<thead>
<tr>
<th>Q10_edu Education</th>
<th>Q1A_heard_about_predia</th>
<th>1 Yes</th>
<th>Count</th>
<th>16ₐ</th>
<th>2ₐ,ₐ</th>
<th>2ₐ</th>
<th>6ₐ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 No high school diploma or GED</td>
<td>% within Wave</td>
<td>27.1%</td>
<td>44.0%</td>
<td>51.0%</td>
<td>40.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 No</td>
<td>Count</td>
<td>3ₐ</td>
<td>2ₐ</td>
<td>3ₐ</td>
<td>8₁</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% within Wave</td>
<td>59.3%</td>
<td>48.0%</td>
<td>43.1%</td>
<td>50.6%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Not sure</td>
<td>Count</td>
<td>ₐ</td>
<td>ₐ</td>
<td>ₐ</td>
<td>1ₐ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% within Wave</td>
<td>1ₐ,ₐ</td>
<td>ₐ</td>
<td>ₐ</td>
<td>ₐ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>Count</td>
<td>ₐ</td>
<td>ₐ</td>
<td>ₐ</td>
<td>1ₐ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% within Wave</td>
<td>1₀₀ₐ₀₀</td>
<td>1₀₀ₐ₀₀</td>
<td>1₀₀ₐ₀₀</td>
<td>1₀₀ₐ₀₀</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1 High school diploma or GED</th>
<th>Q1A_heard_about_predia</th>
<th>1 Yes</th>
<th>Count</th>
<th>ₐ,ₐ</th>
<th>₁₀ₐ,ₐ</th>
<th>ₐ,ₐ</th>
<th>2ₐ</th>
</tr>
</thead>
<tbody>
<tr>
<td>% within Wave</td>
<td>4ₐₐₐ</td>
<td>ₐₐₐ</td>
<td>ₐₐₐ</td>
<td>ₐₐₐ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 No</td>
<td>Count</td>
<td>ₐₐₐ</td>
<td>ₐₐₐ</td>
<td>ₐₐₐ</td>
<td>ₐₐₐ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% within Wave</td>
<td>ₐₐₐₐ</td>
<td>ₐₐₐₐ</td>
<td>ₐₐₐₐ</td>
<td>ₐₐₐₐ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Not sure</td>
<td>Count</td>
<td>ₐₐₐ</td>
<td>ₐₐₐ</td>
<td>ₐₐₐ</td>
<td>ₐₐₐ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% within Wave</td>
<td>ₐₐₐₐ</td>
<td>ₐₐₐₐ</td>
<td>ₐₐₐₐ</td>
<td>ₐₐₐₐ</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Each subscript letter denotes a subset of Wave categories whose column proportions do not differ significantly from each other at the .05 level.
<table>
<thead>
<tr>
<th></th>
<th>Count</th>
<th>% within Wave</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>196</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>2 Some college, but did not graduate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Yes</td>
<td>140</td>
<td>60.3%</td>
<td>59.8%</td>
<td>74.0%</td>
<td>64.5%</td>
<td></td>
</tr>
<tr>
<td>% within Wave</td>
<td>131</td>
<td>60.0%</td>
<td>59.8%</td>
<td>74.0%</td>
<td>64.5%</td>
<td></td>
</tr>
<tr>
<td>2 No</td>
<td>80</td>
<td>34.5%</td>
<td>33.3%</td>
<td>21.2%</td>
<td>29.9%</td>
<td></td>
</tr>
<tr>
<td>% within Wave</td>
<td>73</td>
<td>34.5%</td>
<td>33.3%</td>
<td>21.2%</td>
<td>29.9%</td>
<td></td>
</tr>
<tr>
<td>3 Not sure</td>
<td>12</td>
<td>5.2%</td>
<td>6.8%</td>
<td>4.8%</td>
<td>5.6%</td>
<td></td>
</tr>
<tr>
<td>% within Wave</td>
<td>15</td>
<td>5.2%</td>
<td>6.8%</td>
<td>4.8%</td>
<td>5.6%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>232</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>3 College degree</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Yes</td>
<td>106</td>
<td>68.4%</td>
<td>76.9%</td>
<td>75.7%</td>
<td>73.9%</td>
<td></td>
</tr>
<tr>
<td>% within Wave</td>
<td>143</td>
<td>68.3%</td>
<td>76.9%</td>
<td>75.7%</td>
<td>73.9%</td>
<td></td>
</tr>
<tr>
<td>2 No</td>
<td>44</td>
<td>28.4%</td>
<td>21.0%</td>
<td>21.0%</td>
<td>23.2%</td>
<td></td>
</tr>
<tr>
<td>% within Wave</td>
<td>39</td>
<td>20.7%</td>
<td>21.0%</td>
<td>21.0%</td>
<td>23.2%</td>
<td></td>
</tr>
<tr>
<td>3 Not sure</td>
<td>5</td>
<td>3.2%</td>
<td>2.2%</td>
<td>3.3%</td>
<td>2.9%</td>
<td></td>
</tr>
<tr>
<td>% within Wave</td>
<td>4</td>
<td>3.2%</td>
<td>2.2%</td>
<td>3.3%</td>
<td>2.9%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>155</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>4 Postgraduate or professional degree</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Yes</td>
<td>69</td>
<td>79.3%</td>
<td>76.3%</td>
<td>84.7%</td>
<td>80.5%</td>
<td></td>
</tr>
<tr>
<td>% within Wave</td>
<td>71</td>
<td>76.3%</td>
<td>84.7%</td>
<td>80.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 No</td>
<td>18</td>
<td>20.7%</td>
<td>18.3%</td>
<td>12.7%</td>
<td>16.8%</td>
<td></td>
</tr>
<tr>
<td>% within Wave</td>
<td>17</td>
<td>18.3%</td>
<td>12.7%</td>
<td>16.8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Not sure</td>
<td>0</td>
<td>0.0%</td>
<td>5.4%</td>
<td>2.5%</td>
<td>2.7%</td>
<td></td>
</tr>
<tr>
<td>% within Wave</td>
<td>5</td>
<td>0.0%</td>
<td>5.4%</td>
<td>2.5%</td>
<td>2.7%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>87</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Yes</td>
<td>418</td>
<td>57.3%</td>
<td>63.2%</td>
<td>69.8%</td>
<td>63.4%</td>
<td></td>
</tr>
<tr>
<td>% within Wave</td>
<td>476</td>
<td>63.2%</td>
<td>69.8%</td>
<td>63.4%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 No</td>
<td>269</td>
<td>36.9%</td>
<td>31.6%</td>
<td>26.0%</td>
<td>31.5%</td>
<td></td>
</tr>
<tr>
<td>% within Wave</td>
<td>238</td>
<td>31.6%</td>
<td>26.0%</td>
<td>31.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Not sure</td>
<td>42</td>
<td>5.8%</td>
<td>5.2%</td>
<td>4.2%</td>
<td>5.1%</td>
<td></td>
</tr>
<tr>
<td>% within Wave</td>
<td>39</td>
<td>5.8%</td>
<td>5.2%</td>
<td>4.2%</td>
<td>5.1%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>729</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>
Each subscript letter denotes a subset of Wave categories whose column proportions do not differ significantly from each other at the .05 level.

Q1B_heard_of_camp Heard of take it back campaign * Wave * Q10_edu Education Crosstabulation

<table>
<thead>
<tr>
<th>Q10_edu Education</th>
<th>Q1B_heard_of_camp Heard of take it back campaign</th>
<th>Wave</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 Yes</td>
<td>Count</td>
<td>7<sub>a</sub></td>
<td>5<sub>a</sub></td>
<td>3<sub>a</sub></td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td></td>
<td>12.3%</td>
<td>10.4%</td>
<td>6.3%</td>
<td>9.8%</td>
</tr>
<tr>
<td></td>
<td>2 No</td>
<td>Count</td>
<td>47<sub>a</sub></td>
<td>39<sub>a</sub></td>
<td>42<sub>a</sub></td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td></td>
<td>82.5%</td>
<td>81.3%</td>
<td>87.5%</td>
<td>83.7%</td>
</tr>
<tr>
<td></td>
<td>3 Not sure</td>
<td>Count</td>
<td>3<sub>a</sub></td>
<td>4<sub>a</sub></td>
<td>3<sub>a</sub></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td></td>
<td>5.3%</td>
<td>8.3%</td>
<td>6.3%</td>
<td>6.5%</td>
</tr>
<tr>
<td>Total</td>
<td>Count</td>
<td></td>
<td>57</td>
<td>48</td>
<td>48</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td></td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>1 High school diploma or GED</td>
<td>Q1B_heard_of_camp Heard of take it back campaign</td>
<td>1 Yes</td>
<td>18<sub>a</sub></td>
<td>25<sub>a</sub></td>
<td>18<sub>a</sub></td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td></td>
<td>9.3%</td>
<td>12.4%</td>
<td>10.3%</td>
<td>10.7%</td>
</tr>
<tr>
<td></td>
<td>2 No</td>
<td>Count</td>
<td>157<sub>a</sub></td>
<td>173<sub>a</sub></td>
<td>149<sub>a</sub></td>
<td>479</td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td></td>
<td>80.9%</td>
<td>85.6%</td>
<td>85.6%</td>
<td>84.0%</td>
</tr>
<tr>
<td></td>
<td>3 Not sure</td>
<td>Count</td>
<td>19<sub>a</sub></td>
<td>4<sub>b</sub></td>
<td>7<sub>b</sub></td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td></td>
<td>9.8%</td>
<td>2.0%</td>
<td>4.0%</td>
<td>5.3%</td>
</tr>
<tr>
<td>Total</td>
<td>Count</td>
<td></td>
<td>194</td>
<td>202</td>
<td>174</td>
<td>570</td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td></td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>2 Some college, but did not graduate</td>
<td>Q1B_heard_of_camp Heard of take it back campaign</td>
<td>1 Yes</td>
<td>17<sub>a</sub></td>
<td>16<sub>a</sub></td>
<td>23<sub>a</sub></td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td></td>
<td>7.3%</td>
<td>7.3%</td>
<td>11.1%</td>
<td>8.5%</td>
</tr>
<tr>
<td></td>
<td>2 No</td>
<td>Count</td>
<td>209<sub>a</sub></td>
<td>193<sub>a</sub></td>
<td>175<sub>a</sub></td>
<td>577</td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td></td>
<td>90.1%</td>
<td>88.5%</td>
<td>84.5%</td>
<td>87.8%</td>
</tr>
<tr>
<td></td>
<td>3 Not sure</td>
<td>Count</td>
<td>6<sub>a</sub></td>
<td>9<sub>a</sub></td>
<td>9<sub>a</sub></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td></td>
<td>2.6%</td>
<td>4.1%</td>
<td>4.3%</td>
<td>3.7%</td>
</tr>
<tr>
<td>Total</td>
<td>Count</td>
<td></td>
<td>232</td>
<td>218</td>
<td>207</td>
<td>657</td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td></td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>3 College degree</td>
<td>Q1B_heard_of_camp Heard of take it back campaign</td>
<td>1 Yes</td>
<td>14<sub>a</sub></td>
<td>21<sub>a</sub></td>
<td>19<sub>a</sub></td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td></td>
<td>9.2%</td>
<td>11.4%</td>
<td>10.5%</td>
<td>10.4%</td>
</tr>
<tr>
<td></td>
<td>2 No</td>
<td>Count</td>
<td>130<sub>a</sub></td>
<td>154<sub>a</sub></td>
<td>147<sub>a</sub></td>
<td>431</td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td></td>
<td>85.5%</td>
<td>83.2%</td>
<td>81.2%</td>
<td>83.2%</td>
</tr>
<tr>
<td></td>
<td>3 Not sure</td>
<td>Count</td>
<td>8<sub>a</sub></td>
<td>10<sub>a</sub></td>
<td>15<sub>a</sub></td>
<td>33</td>
</tr>
</tbody>
</table>
4 Postgraduate or professional degree

<table>
<thead>
<tr>
<th></th>
<th>% within Wave</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Count</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>518</td>
<td>152</td>
<td>185</td>
<td>181</td>
<td></td>
</tr>
<tr>
<td>% within Wave</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>% within Wave</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1B_heard_of_camp</td>
<td>Count</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heard of take it back campaign</td>
<td>1 Yes</td>
<td>4</td>
<td>12</td>
<td>17</td>
<td>33</td>
</tr>
<tr>
<td>% within Wave</td>
<td>4.6%</td>
<td>12.9%</td>
<td>14.4%</td>
<td>11.1%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Count</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 No</td>
<td>81</td>
<td>75</td>
<td>92</td>
<td>248</td>
<td></td>
</tr>
<tr>
<td>% within Wave</td>
<td>93.1%</td>
<td>80.6%</td>
<td>78.0%</td>
<td>83.2%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Count</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Not sure</td>
<td>2</td>
<td>6</td>
<td>9</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>% within Wave</td>
<td>2.3%</td>
<td>6.5%</td>
<td>7.6%</td>
<td>5.7%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>% within Wave</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>298</td>
<td>87</td>
<td>93</td>
<td>118</td>
<td></td>
</tr>
<tr>
<td>% within Wave</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td></td>
</tr>
</tbody>
</table>

Each subscript letter denotes a subset of Wave categories whose column proportions do not differ significantly from each other at the .05 level.

Q1G_know_diff Know difference between prediabetes and type 2 diabetes * Wave * Q10_edu Education Crosstabulation

<table>
<thead>
<tr>
<th>Q10_edu Education</th>
<th>Wave</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>0 No high school diploma or GED</td>
<td></td>
</tr>
<tr>
<td>Q1G_know_diff Know difference between prediabetes and type 2 diabetes</td>
<td>1 Yes</td>
</tr>
<tr>
<td>% within Wave</td>
<td>18.6%</td>
</tr>
<tr>
<td>2 No</td>
<td>Count</td>
</tr>
<tr>
<td>% within Wave</td>
<td>72.9%</td>
</tr>
<tr>
<td>3 Not sure</td>
<td>Count</td>
</tr>
<tr>
<td>% within Wave</td>
<td>8.5%</td>
</tr>
<tr>
<td>Total</td>
<td>Count</td>
</tr>
<tr>
<td>% within Wave</td>
<td>100.0%</td>
</tr>
<tr>
<td>1 High school diploma or GED</td>
<td></td>
</tr>
<tr>
<td>Q1G_know_diff Know difference between prediabetes and type 2 diabetes</td>
<td>1 Yes</td>
</tr>
<tr>
<td>% within Wave</td>
<td>26.2%</td>
</tr>
<tr>
<td>2 No</td>
<td>Count</td>
</tr>
<tr>
<td>Education Level</td>
<td>Q1G_know_diff</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>3 Not sure</td>
<td></td>
</tr>
<tr>
<td>2 Some college, but did not graduate</td>
<td>Q1G_know_diff</td>
</tr>
<tr>
<td>1 Yes</td>
<td></td>
</tr>
<tr>
<td>2 No</td>
<td></td>
</tr>
<tr>
<td>3 Not sure</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>3 College degree</td>
<td>Q1G_know_diff</td>
</tr>
<tr>
<td>1 Yes</td>
<td></td>
</tr>
<tr>
<td>2 No</td>
<td></td>
</tr>
<tr>
<td>3 Not sure</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>4 Postgraduate or professional degree</td>
<td>Q1G_know_diff</td>
</tr>
<tr>
<td>1 Yes</td>
<td></td>
</tr>
<tr>
<td>2 No</td>
<td></td>
</tr>
<tr>
<td>3 Not sure</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>Q1G_know_diff</td>
</tr>
<tr>
<td>1 Yes</td>
<td></td>
</tr>
<tr>
<td>2 No</td>
<td></td>
</tr>
<tr>
<td>3 Not sure</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>
Each subscript letter denotes a subset of Wave categories whose column proportions do not differ significantly from each other at the .05 level.

Q1D_concern_for_risk Concerned about risk of prediabetes * Wave * Q10_edu Education Crosstabulation

<table>
<thead>
<tr>
<th>Q10_edu Education</th>
<th>Q1D_concern_for_risk Concerned about risk of prediabetes</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 No high school diploma or GED</td>
<td>Count</td>
<td>24_a</td>
<td>20_a</td>
<td>19_a</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td>43.6%</td>
<td>43.5%</td>
<td>39.6%</td>
<td>42.3%</td>
</tr>
<tr>
<td>2 No</td>
<td>Count</td>
<td>28_a</td>
<td>24_a</td>
<td>23_a</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td>50.9%</td>
<td>52.2%</td>
<td>47.9%</td>
<td>50.3%</td>
</tr>
<tr>
<td>3 Not sure</td>
<td>Count</td>
<td>3_a</td>
<td>2_a</td>
<td>6_a</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td>5.5%</td>
<td>4.3%</td>
<td>12.5%</td>
<td>7.4%</td>
</tr>
<tr>
<td>Total</td>
<td>Count</td>
<td>55</td>
<td>46</td>
<td>48</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>1 High school diploma or GED</td>
<td>Count</td>
<td>90_a</td>
<td>98_a</td>
<td>72_a</td>
<td>260</td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td>48.1%</td>
<td>50.8%</td>
<td>43.1%</td>
<td>47.5%</td>
</tr>
<tr>
<td>2 No</td>
<td>Count</td>
<td>81_a</td>
<td>75_a</td>
<td>76_a</td>
<td>232</td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td>43.3%</td>
<td>38.9%</td>
<td>45.5%</td>
<td>42.4%</td>
</tr>
<tr>
<td>3 Not sure</td>
<td>Count</td>
<td>16_a</td>
<td>20_a</td>
<td>19_a</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td>8.6%</td>
<td>10.4%</td>
<td>11.4%</td>
<td>10.1%</td>
</tr>
<tr>
<td>Total</td>
<td>Count</td>
<td>187</td>
<td>193</td>
<td>167</td>
<td>547</td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>2 Some college, but did not graduate</td>
<td>Count</td>
<td>105_a</td>
<td>93_a</td>
<td>91_a</td>
<td>289</td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td>46.3%</td>
<td>43.3%</td>
<td>44.6%</td>
<td>44.7%</td>
</tr>
<tr>
<td>2 No</td>
<td>Count</td>
<td>102_a</td>
<td>99_a</td>
<td>100_a</td>
<td>301</td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td>44.9%</td>
<td>46.0%</td>
<td>49.0%</td>
<td>46.6%</td>
</tr>
<tr>
<td>3 Not sure</td>
<td>Count</td>
<td>20_a</td>
<td>23_a</td>
<td>13_a</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td>8.8%</td>
<td>10.7%</td>
<td>6.4%</td>
<td>8.7%</td>
</tr>
<tr>
<td>Total</td>
<td>Count</td>
<td>227</td>
<td>215</td>
<td>204</td>
<td>646</td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
<tr>
<td>3 College degree</td>
<td>Count</td>
<td>87_a</td>
<td>84_b</td>
<td>72_b</td>
<td>243</td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td>60.0%</td>
<td>46.4%</td>
<td>40.7%</td>
<td>48.3%</td>
</tr>
<tr>
<td>2 No</td>
<td>Count</td>
<td>55_a</td>
<td>86_a,b</td>
<td>88_b</td>
<td>229</td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td>37.9%</td>
<td>47.5%</td>
<td>49.7%</td>
<td>45.5%</td>
</tr>
<tr>
<td>3 Not sure</td>
<td>Count</td>
<td>3_a</td>
<td>11_a,b</td>
<td>17_b</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td>2.1%</td>
<td>6.1%</td>
<td>9.6%</td>
<td>6.2%</td>
</tr>
<tr>
<td>Total</td>
<td>Count</td>
<td>145</td>
<td>181</td>
<td>177</td>
<td>503</td>
</tr>
<tr>
<td>4 Postgraduate or professional degree</td>
<td>Q1D_concern_for_risk</td>
<td>Concerned about risk of prediabetes</td>
<td>1 Yes</td>
<td>Count</td>
<td>% within Wave</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>----------------------</td>
<td>-------------------------------------</td>
<td>-------</td>
<td>--------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100.0% 100.0% 100.0% 100.0%</td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td></td>
<td></td>
<td></td>
<td>53.6% 48.3% 41.7% 47.2%</td>
</tr>
<tr>
<td></td>
<td>2 No</td>
<td></td>
<td></td>
<td></td>
<td>45\textsubscript{a} 43\textsubscript{a} 48\textsubscript{a} 136</td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td></td>
<td></td>
<td></td>
<td>41.7% 47.2% 53.0% 47.9%</td>
</tr>
<tr>
<td></td>
<td>3 Not sure</td>
<td></td>
<td></td>
<td></td>
<td>4\textsubscript{a} 4\textsubscript{a} 6\textsubscript{a} 14</td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td></td>
<td></td>
<td></td>
<td>4.8% 4.5% 5.2% 4.9%</td>
</tr>
<tr>
<td>Total</td>
<td>Count</td>
<td></td>
<td>84</td>
<td>89</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td></td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total</th>
<th>Q1D_concern_for_risk</th>
<th>Concerned about risk of prediabetes</th>
<th>1 Yes</th>
<th>Count</th>
<th>% within Wave</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100.0% 100.0% 100.0% 100.0%</td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td></td>
<td></td>
<td></td>
<td>50.3% 46.7% 42.5% 46.5%</td>
</tr>
<tr>
<td></td>
<td>2 No</td>
<td></td>
<td></td>
<td></td>
<td>351\textsubscript{a} 338\textsubscript{a, b} 302\textsubscript{b} 991</td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td></td>
<td></td>
<td></td>
<td>43.1% 45.0% 48.9% 45.7%</td>
</tr>
<tr>
<td></td>
<td>3 Not sure</td>
<td></td>
<td></td>
<td></td>
<td>46\textsubscript{a} 60\textsubscript{a} 61\textsubscript{a} 167</td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td></td>
<td></td>
<td></td>
<td>6.6% 8.3% 8.6% 7.8%</td>
</tr>
<tr>
<td>Total</td>
<td>Count</td>
<td></td>
<td>698</td>
<td>724</td>
<td>711</td>
</tr>
<tr>
<td></td>
<td>% within Wave</td>
<td></td>
<td>100.0%</td>
<td>100.0%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Each subscript letter denotes a subset of Wave categories whose column proportions do not differ significantly from each other at the .05 level.
Table 8: Differences in awareness of prediabetes by education level
Do you know the difference between prediabetes and type 2 diabetes?

<table>
<thead>
<tr>
<th>Education Level</th>
<th>Pre</th>
<th>Post</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>No high school graduation/no GED</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>18.6%</td>
<td>12.2%</td>
<td>15.7%</td>
</tr>
<tr>
<td>No</td>
<td>72.9%</td>
<td>83.7%</td>
<td>77.8%</td>
</tr>
<tr>
<td>Not sure</td>
<td>8.5%</td>
<td>4.1%</td>
<td>6.5%</td>
</tr>
<tr>
<td>High school graduate or GED</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>26.2%</td>
<td>26.0%</td>
<td>26.1%</td>
</tr>
<tr>
<td>No</td>
<td>68.2%</td>
<td>67.5%</td>
<td>67.8%</td>
</tr>
<tr>
<td>Not sure</td>
<td>5.6%</td>
<td>6.5%</td>
<td>6.1%</td>
</tr>
<tr>
<td>Some college</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>29.7%</td>
<td>26.3%</td>
<td>28.1%</td>
</tr>
<tr>
<td>No</td>
<td>63.4%</td>
<td>62.7%</td>
<td>63.0%</td>
</tr>
<tr>
<td>Not sure</td>
<td>6.9%</td>
<td>11.1%</td>
<td>8.9%</td>
</tr>
<tr>
<td>College degree</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>35.5%</td>
<td>44.9%</td>
<td>40.6%</td>
</tr>
<tr>
<td>No</td>
<td>52.9%</td>
<td>42.2%</td>
<td>47.1%</td>
</tr>
<tr>
<td>Not sure</td>
<td>11.6%</td>
<td>13.0%</td>
<td>12.4%</td>
</tr>
<tr>
<td>Post graduate or professional degree</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>48.3%</td>
<td>46.7%</td>
<td>47.5%</td>
</tr>
<tr>
<td>No</td>
<td>41.4%</td>
<td>38.0%</td>
<td>39.7%</td>
</tr>
<tr>
<td>Not sure</td>
<td>10.3%</td>
<td>15.2%</td>
<td>12.8%</td>
</tr>
</tbody>
</table>

Highlighted numbers are statistically significant changes at .05 level