MISSOURI NEWBORN SCREENING

2016 Annual Report

Governor Michael L. Parson Randall W. Williams, MD, FACOG, Director

Missouri Department of Health and Senior Services

Acknowledgments

The Missouri State Genetic Advisory Committee and its ancillary Newborn Screening Standing Committee, Sickle Cell Standing Committee, Cystic Fibrosis Standing Committee, Newborn Hearing Screening Standing Committee, and the Lysosomal Storage Disorder Task Force Committee play a vital role in supporting the activities of the Missouri Department of Health and Senior Services Newborn Screening Program.

The expertise the committees provide is complemented by department staff who are dedicated to helping Missouri children receive the best care available when diagnosed with one of the serious medical conditions detectable through screening tests.

This project was supported by the Health Resources and Services Administration (HRSA) of the U.S. Department of Health and Human Services (HHS) under grant number H61MC00071, Universal Newborn Hearing Screening, \$250,000.00, 0.0% financed with nongovernmental sources. This information or content and conclusions are those of the author and should not be construed as the official position or policy of, nor should any endorsements be inferred by HRSA, HHS or the U.S. Government.

This project was supported by the Health Resources and Services Administration (HRSA) of the U.S. Department of Health and Human Services (HHS) under grant number B04MC2935001 Title V Maternal and Child Health Block Grant, \$8,086.17, 0.0% financed with nongovernmental sources. This information or content and conclusions are those of the author and should not be construed as the official position or policy of, nor should any endorsements be inferred by HRSA, HHS or the U.S. Government.

Missouri Department of Health and Senior Services Division of Community and Public Health Section for Healthy Families and Youth Bureau of Genetics and Healthy Childhood and Missouri State Public Health Laboratory

AN EO/AA employer. Services provided on a nondiscriminatory basis. Hearing- and Speech-impaired citizens can dial 711.

Table of Contents

Screening Spotlight: Newborn Screening Laboratory Converts to a Six Day Work Week	1
The Newborn Screening Process	4
The Newborn Hearing Screening Process	5
The Newborn Critical Congenital Heart Disease Screening Process	6
Newborn Screening Contact Information	7
Appendix 1: Disorders Confirmed for 2016 and Projected Incidence Rates	8
Appendix 2: Newborn Screening Laboratory Report – Samples Received 2016	12
Appendix 3: Newborn Screening Laboratory Report – Abnormal Results 2016	13
Appendix 4: Outcome Data - Newborn Screening Samples and Results	14
Appendix 5: 2016 Poor Quality Samples Report	15
Appendix 6: Newborn Blood Spot Screening Hemoglobinopathy Report 2016	17
Appendix 7: Newborn Hearing Screening Data for 2016	18
Appendix 8: Number of Newborns with Abnormal Newborn Blood Spot Screens Referred for Follow-up by County in 2016	19
Appendix 9: Number of Newborns that Missed a Hearing Screening by County in 2016	20
Appendix 10: Number of Newborns Referred After a Hearing Screen by County in 2016	21
Appendix 11: Newborn Screening Parent Satisfaction Survey	22
Appendix 12: Newborn Hearing Screening Parent Satisfaction Survey	24

Screening Spotlight: Newborn Screening Laboratory Converts to a Six Day Work Week

In 2016, the Missouri State Public Health Laboratory (MSPHL) achieved a paramount improvement in its newborn screening system by adding Saturdays and most holidays to the newborn screening testing regimen. The only holidays during which the Newborn Screening Laboratory (NBSL) does not test specimens are Thanksgiving, Christmas Day, and New Year's Day. Prior to this change, the NBSL tested newborn screening specimens Monday through Friday and did not test on any state holidays.

This change in testing regimen was not an easy task for a laboratory unit that tests for over six million analytes per year with ten different testing methodologies. The addition of testing on Saturdays and most holidays came with several challenges, including: funding to hire staff, hiring staff willing to work on Saturdays and holidays, and making the necessary enhancements to the current courier system. Due to legislative funding headed by a State Representative from the Kansas City area, the MSPHL was able to develop a systematic plan to overcome these challenges and successfully implement the necessary changes.

The first step was to enhance the courier system by adding holiday and Sunday pickups at the birthing hospitals. In order to maximize efficiency, the courier needs to pick up samples one day ahead of the NBSL testing, so beginning July 5, 2015 couriers began picking up newborn screening samples Sundays through Fridays, including holidays (see Missouri NBS Sample Transit Time Improvements graph). In addition, eight birthing hospitals that were not formerly receiving courier services were added to the pick up routes. These enhancements provided a 17 percent increase in the number of samples received by the NBSL within 3 days of collection at the hospital.

After the courier enhancements were in place, Saturday and holiday testing could begin. The goal for staffing was to maintain a voluntary process where the current NBSL staff would not be forced to rotate Saturday and holiday coverage. Utilizing an employment status called "secondary assignment" made this possible. The NBSL was able to hire current MSPHL scientists through secondary assignment, also known as Hourly & Intermittent (H&I's), who wanted to work some Saturdays and holidays for additional pay. This staff of approximately 18 employees, led by a fulltime laboratory manager, became known as the "Weekend Warriors." The Saturday and holiday testing began on October 3, 2015

This staff of approximately 18 employees, led by a fulltime laboratory manager, became known as the "Weekend Warriors."

and the MSPHL immediately realized an additional 9 percent increase in samples tested within 3 days of collection, bringing the total timeliness improvement to about 28 percent.

As a result of the NBSL work expansion the MSPHL has realized several valuable benefits, including:

- Newborn screening timeliness has improved providing a much better turnaround time for the detection of many time-critical disorders.
- A collaborative workforce has been established between the regular NBSL staff and the Weekend Warrior team.
- The work expansion has assisted in breaking down silos between laboratory units as the Weekend Warriors come from several units throughout the laboratory.
- The Weekend Warrior team has developed an environment of comradery.
- The Saturday and holiday testing has reduced the huge surge days (some as high as 900 samples) that resulted from weekends and three-day weekends, resulting in a more even workflow for all NBSL staff.

All of 2013

Note: Holiday courier pickup was added in January of 2014. The Sunday courier addition, along with eight additional hospital pickup sites, was implemented July 5, 2015. Saturday and holiday testing began October 3, 2015.

When the sample collection date is not provided, the sample is tested for everything, however, we cannot provide normal results for all testing categories. A repeat screen is required.

As improving timeliness continues to be a focus in newborn screening, state newborn screening laboratories must continuously evaluate their processes. This has resulted in an increase of state newborn screening laboratories expanding their work week throughout the nation. Currently, about half of state newborn screening laboratories test fully on Saturdays. Missouri's volunteer model has been inquired about by several other states interested in implementing a similar process. This effort has been a tremendous success, and the Newborn Screening Program would like to thank all those who have and are still contributing to this remarkable improvement.

The Weekend Warriors

The Newborn Screening Process

1: TESTING

The baby's heel is pricked and a few drops of blood are collected on a filter paper 24 to 48 hours after birth.

SCREENING

The dried blood spot specimen is shipped to the State Public Health Laboratory.

2: FOLLOW-UP

Positive screen results are reported by phone/ fax/letter from lab and follow-up staff to baby's physician. Results are also sent to the appropriate Genetic Tertiary Center in Missouri for follow-up.

Baby's physician or health care provider contacts baby's parents.

Specimen is tested for multiple conditions.

Parents bring baby back in for evaluation and more testing at the genetic center.

3: DIAGNOSIS/ INTERVENTION

Depending on the screen result and the condition screened, repeat or confirmatory testing occurs at the genetic center.

Parent education for signs/symptoms to watch for is conducted.

Baby's physician consults with the specialist appropriate to the condition.

4: TREATMENT & MANAGEMENT

Once diagnosis is made, treatment begins. For some life-threatening conditions, treatment may occur prior to diagnosis - on the recommendation of a specialist.

Parents receive treatment guidelines/ education. Team support services, as appropriate, include:

- Metabolic dietitian monitoring and consultation
- Ongoing blood monitoring
- Referral to early intervention services
- Pulmonary/CF services
- Pediatric endocrine monitoring
- Pediatric hematology monitoring
- Genetic counseling and consideration of family testing
- Other allied health services as needed

The Newborn Hearing Screening Process

1: SCREENING	2: FOLLOW-UP	3: EVALUATION	4: INTERVENTION
Baby is born. Hospital screens for hearing loss and checks for risk factors for late onset hearing loss prior to discharge.	Hospital reports results to parents and baby's physician.	Audiologist evaluates babies that don't pass a hearing screening by 3 months of age.	Babies diagnosed with permanent hearing loss enroll in First Steps (early intervention service) by 6 months of age.
			Arissouri EARLY INTERVENTION
Hospital submits results to the Missouri Department of Health and Senior Services (DHSS) via the Missouri Electronic Vital Records (MoEVR) system or on a	DHSS sends letters to parents and physicians of newborns who did not pass or who missed the screening.	Audiologist reports evaluation results to DHSS.	Babies receive services from the following as appropriate: Primary Care Physician, Otolaryngologist, Geneticist, and Ophthalmologist.
MOEVR	Parents return baby to hospital/health care	Audiologist identifies risk factors and makes	
Manual data is entered into the Missouri Health Strategic Architectures and Information Cooperative (MOHSAIC) data system. DHSS retrieves results from the MOHSAIC data system.	provider 1-3 weeks after initial referral.	recommendations.	Baby may be a candidate for: Hearing aids, cochlear implant, sign language instruction, or speech and language services.
		DHSS sends letters to the families of children diagnosed with permanent hearing loss and refers to Missouri's Part C of the Individuals with Disabilities Education Act (IDEA) program, First Steps.	

The Newborn Critical Congenital Heart Disease Screening Process

1: SCREENING

Baby is born.

Hospital or midwife screens for critical congenital heart disease (CCHD) between 24 and 48 hours after birth or prior to discharge.

Screening should be in accordance with the American Academy of Pediatrics and American Heart Association guidelines.

Screening should be done while baby is warm, calm, and awake.

2: FOLLOW-UP

If screening is normal, no further action is necessary.

If baby does not pass the screening, further evaluation will be necessary and the primary care provider should be contacted as soon as possible.

3: EVALUATION

The baby's primary care provider will perform a thorough physical examination to rule out any non-cardiac issues that may have prevented baby from passing the CCHD screen.

An echocardiogram may be done to look for a CCHD.

The echocardiogram should be read by a pediatric cardiologist.

4: INTERVENTION

Babies diagnosed with CCHDs will typically require surgical or catheter intervention within the first year of life.

Parents will receive treatment guidelines and education.

Babies may receive services from the following as appropriate: primary care provider, pediatric cardiologist, geneticist, nurse, nutrionist, pharmacist, social worker, and child life specialist.

Newborn Screening Contact Information

Telephone Contacts:

Newborn Screening Laboratory main number	573-751-2662
Order newborn screening specimen forms	573-751-3334
Genetics and Healthy Childhood, for follow-up information	800-877-6246

Web Addresses:

Critical Congenital Heart Disease – <u>www.health.mo.gov/cchd</u> Newborn Screening Laboratory – <u>http://health.mo.gov/lab/newborn/</u> Newborn Screening Program – <u>www.health.mo.gov/newbornscreening</u> Newborn Hearing Screening Program – <u>www.health.mo.gov/newbornscreening</u>

DISORDER	DIAGNOSIS CONFIRMED AS POSITIVE AND UNDER MEDICAL CARE	PROJECTED INCIDENCE RATE
Amino Acid Disorders	12	1/6,500*
Argininemia		
Argininosuccinic acidemia	2	
Citrullinemia type I	1	
Citrullinemia type II		
Defects of biopterin cofactor biosynthesis		
Defects of biopterin cofactor regeneration		
Homocystinuria		
Hypermethioninemia		
Hyperphenylalaninemia		
Hyperphenylalaninemia, benign		
Maple syrup urine disease		
Maternal PKU		
Phenylketonuria (PKU)	9	
Tyrosinemia type I		
Tyrosinemia type II		
Tyrosinemia type III		
Biotinidase Deficiency (BIOT)	13	1/6,000*
Partial biotinidase deficiency	10	
Profound biotinidase deficiency	3	
Congenital Adrenal Hyperplasia (CAH)	4	1/19,500
Congenital adrenal hyperplasia non salt waster		
Congenital adrenal hyperplasia salt waster	4	
Congenital Primary Hypothyroidism (CH)	45	1/1,800
Cystic Fibrosis (CF)	26	1/3,000
Cystic fibrosis	21	
Cystic fibrosis transmembrane conductance	5	
regulator (CRTR) - related metabolic syndrome		
(CRMS)		
Fatty Acid Oxidation Disorders	25	1/3,400*
Carnitine acylcarnitine translocase deficiency		
Carnitine uptake deficiency		
Carnitine palmitoyl transferase deficiency I		
Carnitine palmitoyl transferase deficiency II		
Dienoyl-CoA reductase deficiency		
Glutaric acidemia type II		

Appendix 1: Disorders Confirmed for 2016 and Projected Incidence Rates

DICORDER	DIAGNOSIS CONFIRMED AS	PROJECTED
DISORDER	POSITIVE AND	INCIDENCE RATE
	UNDER MEDICAL CAPE	
Isobutyryl-CoA dehydrogenase deficiency	1	
Long-chain hydroxyacyl-CoA dehydrogenase	1	
deficiency	1	
Maternal carnitine uptake deficiency	-	
Medium-chain acyl-CoA dehydrogenase		
deficiency	9	
Medium-chain ketoacyl-CoA thiolase deficiency	-	
Medium/Short chain L-3 hvdroxy acvl-CoA		
dehydrogenase deficiency		
Short-chain acyl-CoA	5	
dehydrogenase deficiency		
Trifunctional protein deficiency		
Very-long chain acyl-CoA	9	
dehydrogenase deficiency		
Galactosemia (GALT)	11	1/7,000*
Classical galactosemia	3	1/26,000**
Duarte galactosemia	8	
Lysosomal Storage Disorders (LSD)	37	1/2,100*
Fabry Disease	21	
Fabry	20	
Unknown onset		
Genotype of unknown significance	1	
Gaucher Disease	2	
Gaucher type 1 (non-neuropathic)	1	
Unknown onset		
Genotype of unknown significance	1	
Hurler Syndrome	2	
Attentuated		
Severe		
Genotype of unknown significance	2	
Krabbe Disease	2	
Infantile onset	1	
Later onset		
Unknown onset	1	
Genotype of unknown significance		
Pompe Disease	10	
Classical infantile o nset	2	
Non-classical infantile onset		
Later onset	7	

DISORDER	DIAGNOSIS CONFIRMED AS POSITIVE AND UNDER MEDICAL CARE	PROJECTED INCIDENCE RATE
Unknown onset		
Genotype of unknown significance	1	
Organic Acid Disorders	7	1/11,100*
2-Methyl-3-hydroxybutyric aciduria		
2-Methylbutyryl-CoA dehydrogenase deficiency	1	
3-Hydroxy-3-methylglutaric aciduria		
3-Methylcrotonyl-CoA carboxylase deficiency		
3-Methylglutaconic aciduria		
Beta ketothiolase		
Glutaric acidemia, type I	1	
Isobutyryl-CoA dehydrogenase deficiency		
Isovaleric acidemia		
Malonic acidemia		
Methylmalonic acidemia (CBL A,B; vitamin B12		
disorders)		
Methylmalonic acidemia (CBL, C,D)	1	
Methylmalonic acidemia (MUT, methylmalonyl-		
CoA mutase)		
Multiple carboxylase deficiency		
Propionic acidemia	2	
Forminioglutamic acid (FIGLU) not a disorder	2	
on the newborn screening panel but is found		
Hemoglobinopathies	35	1/2,200
Sickle cell anemia disease (FS)	17	1/4,500 Total population 1/400 African-American population
Sickle hemoglobin-C disease (FSC)	6	
Sickle beta zero thalassemia disease		
Sickle beta plus thalassemia disease (FSA)	5	
Sickle hemoglobin-D disease		
Sickle hemoglobin-E disease		
Sickle hemoglobin-O-Arab disease		
Sickle hemoglobin Lepore Boston disease		
Sickle hereditary persistence of fetal hemoglobin		
(HPFH) disorder		
Sickle "Unidentified"		
Homozygous-C disease (FC)	2	
Hemoglobin-C beta zero thalassemia disease		

DISORDER	DIAGNOSIS CONFIRMED AS POSITIVE AND UNDER MEDICAL CARE	PROJECTED INCIDENCE RATE
Hemoglobin-C beta plus thalassemia disease	1	
(FCA)		
Hemoglobin-C with unidentified hemoglobin	1	
(FCX)		
Homozygous-E disorder		
Hemoglobin-E beta zero thalassemia disease		
Hemoglobin-E beta plus thalassemia disease (FE)	2	
Homozygous beta zero thalassemia disease		
Double heterozygous beta thalassemia disease		
Hemoglobin-H disease (Highly Elevated Barts)	1	
Other (FSX) compound heterozygous Hb S and		
G-Taipei		
Other Disease Condition		

*Combined incidence of all disorders in this category **Incidence only for classical galactosemia

Γ	Newb	orn Specimens Receiv	ved	
	Initial	Repeat	Poor Quality	Total Infant Specimens
Jan	5,962	1,336	203	7,501
Feb	5,860	1,268	219	7,347
Mar	6,332	1,401	166	7,899
Apr	5,834	1,247	145	7,226
May	6,019	1,248	136	7,403
Jun	6,221	1,276	157	7,654
Jul	6,625	1,414	183	8,222
Aug	6,877	1,379	179	8,435
Sep	6,576	1,278	140	7,994
Oct	6,232	1,234	158	7,624
Nov	5,787	1,199	200	7,186
Dec	6,217	1,344	242	7,803
Y.T.D.	74,542 (80.77%)	15,624 (16.93%)	2,128 (2.31%)	92,294

Appendix 2: Newborn Screening Laboratory Report - Samples Received 2016

					ABN	ORMAL I	RESULTS							
Disord	ler	Jan	Feb	Mar	Apr	May	Jun	٦ul	Aug	Sep	Oct	Νον	Dec	Υ.T.D.
	Confirmed Profound	0	0	0	0	0	0	0	Ł	0	0	-	~	°,
	Confirmed Partial	-	-	-	0	2	e	2	0	0	0	0	0	10
2	High Risk	2	2	2	-	2	ю	2	-	0	2	-	-	19
	Borderline Risk	5	2	8	8	8	12	14	7	7	2	3	4	80
	Confirmed	0	0	-	-	0	+	-	0	0	0	0	0	4
CAH	High Risk	2	2	2	m	-	9	e	2	2	9	с	-	36
	Borderline Risk	53	41	57	59	55	59	50	32	54	47	25	31	563
	Confirmed CF	e	с	2	۲	۲	2	0	۲	-	0	4	3	21
	Confirmed CRMS	-	0	-	0	0	0	0	0	0	-	0	-	4
СF	Carriers Identified by NBS	11	14	16	2	15	6	10	4	12	10	2J	8	119
	Referred	15	17	20	2	17	11	10	2	13	12	ი	1	145
	Initial IRT	74	82	61	47	42	41	52	46	44	56	51	49	645
	Confirmed	9	с С	с	4	с	2	4	2	6	4	2	с С	45
сн	High Risk	∞	e	4	S	e	5	4	2	∞	9	0	2	50
	Borderline Risk	102	113	74	65	42	47	44	48	49	75	96	131	886
	Confirmed Classical	0	0	0	0	0	0	2	0	0	0	÷	0	3
	Confirmed DG	-	0	m	0	-	0	2	0	-	0	0	0	80
GALT	Confirmed G-6-PD	0	0	-	-	0	-	-	0	0	-	0	0	5
	Hiah Risk	e	0	4	2	-	2	12	0	2	-	-	-	29
	Borderline Risk	5	2	2	0	0	7	10	5	~	œ	e	0	40
	Confirmed	£	-	2	0	0	ę	0	0	-	-	÷	°	13
A	Referred	2	-	2	4	-	7	0	0	2	4	~	e	23
	Low Risk	17	20	74	50	58	59	54	56	50	42	33	71	694
	Confirmed	£	0	-	0	2	0	0	-	0	0	2	0	7
AO	Referred	5	2	2	-	2	0	e	-	2	4	e	2	24
	Low Risk	53	49	55	43	49	29	40	42	37	33	46	72	548
	Confirmed	-	2	2	с	с	4	٢	0	2	2	Ł	4	25
FA	Referred	~	7	9	9	5	თ	2	5	2	e	~	9	53
	Low Risk	44	41	65	64	52	49	50	56	35	53	59	57	625
	Sickle Cell Disease	2	4	2	2	4	2	1	2	3	3	1	2	28
Чb	Other Hemoglobinopathies	0	0	0	1	0	0	0	0	2	4	0	0	7
	Traits Identified by NBS	120	131	134	119	136	131	150	139	153	141	131	158	1643
	Confirmed Disorder	2	3	2	2	3	5	9	4	3	2	2	3	37
	Confirmed Carrier	0	4	с С	ი	-	9	2	с	5	~	2	З	33
LSD	Confirmed Pseudo Def.	S	-	2	2	0	5	4	2	2	-	0	с	25
	High Risk	5	14	12	13	5	18	18	14	16	4	10	17	146
	Borderline Risk	14	33	45	48	72	49	70	49	36	55	36	55	562
	Confirmed	0	0	0	0	0	0	0	0	0	0	0	0	0
SCID	Referred	0	0	0	0	0	0	0	0	0	0	0	0	0
	Low Risk	0	0	0	0	0	0	0	0	0	0	0	0	0
BIO = biotinids	ase deficiency	CF = cystic fibrosis		GAL =	galactosemia	0 = VO	rganic acid	H = H	lem og lobi nop athies		Tot	al Confirmed		220
CAH = conger	nital adrenal hyperplasia	CH = congenital hypothyroidi	ms	AA = a	mino acid	FA = fa	ttty acid	rsd =	lysosomal storage dis	order				
SCIU = Seven	e Combined immunoaenciency													

CALENDAR YEAR 2016 NEWBORN SCREENING LABORATORY REPORT

Appendix 3: Newborn Screening Laboratory Report - Abnormal Results 2016

Appendix 4: Outcome Data – Newborn Screening Samples and Results

• In 2016, there were 92,294 blood spot samples received in the laboratory. Samples received included:

Initial	Repeat	Poor Quality
74,542	15,624	2,128

• In the process of screening newborns for 70 genetic and metabolic conditions, it is the newborn screening laboratory's role to assess the risk of any abnormal screening by evaluating the marker analytes and the levels that were detected. This risk assessment then dictates different levels of action and follow-up protocols. The 92,294 newborn screening samples received at the state newborn screening laboratory can be separated into two risk categories. The number/percentage of test results falling into these categories during 2016 were:

High Risk / Referred	Low Risk / Borderline Risk
560 (0.75%)	4,643 (6.2%)

High Risk / **Referred** – Results are immediately phoned and faxed to the physician of record and to the contracted genetic referral centers for consultation and confirmatory testing. Final laboratory reports are mailed to the facility that submitted the specimen and the physician of record.

Low Risk / Borderline Risk – Final laboratory results are mailed to the physician of record and submitting facility with a comment that a repeat newborn screen is necessary.

• **Two hundred and fifteen (215)** confirmed disorders were diagnosed from these abnormal newborn screen results during 2016.

Appendix 5: 2016 Poor Quality Samples Report

QUANTITY NOT SUFFICIENT: Quantity of blood on filter paper not sufficient for testing. Possible causes: removing filter paper before blood has completely filled circle; not allowing an ample size blood drop to form before applying to filter paper; inadequate heel stick procedure.	409
INCOMPLETE SATURATION: Uneven saturation; blood did not soak through the filter paper. Possible causes: removing filter paper before blood has completely filled circle or before blood has soaked through to opposite side; improper capillary tube application; allowing filter paper to come in contact with gloved or ungloved hands or substances such as hand lotion or powder, either before or after blood sample collection.	519
SAMPLE ABRADED: Filter paper scratched, torn or abraded. Possible causes: improper use of capillary tubes. To avoid damaging the filter paper fibers, do not allow the capillary tube to touch the filter paper. Actions such as "coloring in" the circle, repeated dabbing around the circle, or any technique that may scratch, compress, or indent the paper should not be used.	70
LAYERED CLOTTED OR SUPERSATURATED: Possible causes: touching the same circle on filter paper to blood drop several times; filling circle on both sides of filter paper; application of excess blood; clotted swirl marks from improper capillary application.	873
DILUTED, DISCOLORED OR CONTAMINATED: Possible causes: squeezing or milking of area surrounding the puncture site; allowing filter paper to come into contact with gloved or ungloved hands, or substances such as alcohol, formula, antiseptic solutions, water, hand lotion, powder, etc., either before or after blood sample collection; exposing blood spots to direct heat; allowing blood spots to come into contact with tabletop, etc. while drying the sample.	145
OLD SAMPLE: Sample greater than 15 days old when received at State Public Health Laboratory.	25
DAMAGED SPECIMEN: Specimen damaged in transit.	10
NO BLOOD: Filter paper submitted without blood.	2
FILTER PAPER AND FORM BARCODES DO NOT MATCH: Bar code on filter paper does not match bar code on Newborn Screening Form. Collection forms contain barcodes on demographic, hearing and filter paper portions. The barcodes may not be altered in any way. If incorrect baby is sampled, do not remove filter paper and attach to a different demographic portion. If a sampling error occurs, the entire form needs to be voided and sample needs to be recollected on a new form. All barcodes must match laboratory copy, submitter copy, newborn hearing screen, and filter paper.	7

MISSING, INCOMPLETE OR CONFLICTING PATIENT INFORMATION: Missing, incomplete or conflicting demographic information.	14
SERUM RINGS: Serum separated into clear rings around blood spot. Possible causes: card dried vertically (on side) instead of flat; squeezing excessively around puncture site; allowing filter paper to come in contact with alcohol, hand lotion, etc.	39
BLOOD ON OVERLAY COVER: Overlay cover came in contact with wet blood sample. Possible causes: sample is poor quality status because blood soaked from back of filter paper onto the gold colored backing of the form. The filter paper circles are designed to hold a specific quantity of blood. If the wet filter paper is allowed to come into contact with the paper backing of form, blood can be drawn out of filter making the quantitative tests performed by the Newborn Screening Laboratory invalid. It is very important that the wet filter paper does not come into contact with any surface until completely dry.	8
OLD FORM: Sample received on out-of-date form.	7
Total Poor Quality Samples Received	2,128 (2.31%)

Appendix 6: Newborn Blood Spot Screening Hemoglobinopathy Report 2016

74,542	(80.8%)
15,624	(16.9%)
2,128	(2.3%)
92,294	
	74,542 15,624 <u>2,128</u> 92,294

Significant Results = 1,678							
Sickle Cell Disease		Other Disease		Trait Conditions			
		Condition	ns				
FS	17	FCA	1	FAS	1,114		
FSA	5	FCX	1	FSAINC	7		
FSC	6	FE	2	FAC	298		
FC	2	Highly	1	FCAINC	2		
		Elevated Barts					
				FAE	44		
				FAD	39		
				FAX	136		
				FASX			
				FACX			
				Slightly Elevated Barts	3		
				Other Trait condition			
Total	30	Total	5	Total	1,643		

Appendix 7: Newborn Hearing Screening Data for 2016

2016 calendar year provisional data for Missouri shows:

- 75,863 occurrent births (source: Department of Health and Senior Services Vital Records)
- 75,747 occurrent births (source: Missouri Health Strategic Architectures and Information Cooperative [MOHSAIC]*)
- 98.1% (74,349) of newborns were screened
- 98% (72,869) of infants were screened by 1 month of age
- 1.51% (1,151) of infants failed the final screening
- 90.2% (633) of the infants who failed their final screening and received an audiologic evaluation were evaluated and diagnosed by 3 months of age
- 100 infants were diagnosed with a permanent hearing loss

*The difference of 116 births between the occurrent birth count in the program data management system, the Missouri Health Strategic Architectures Information Collaborative (MOHSAIC), and the total occurrent births reported by Vital Records is the result of records that do not yet have an assigned Department Client Number (DCN) and records that are sealed. Records are not released from the Vital Records system to MOHSAIC until the DCN assignment is complete. Non-complete records are due to issues such as paternity and adoptions. Sealed birth records are neither displayed nor counted in MOHSAIC. This report is based upon MOHSAIC records.

Appendix 8: Number of Newborns with Abnormal Newborn Blood Spot Screens Referred for Follow-up by County in 2016

Appendix 9: Number of Newborns that Missed a Hearing Screening by County in 2016

Appendix 10: Number of Newborns Referred After a Hearing Screen by County in 2016

Appendix 11: Newborn Screening Parent Satisfaction Survey

A satisfaction survey of parents was conducted for families of babies having abnormal newborn screening results reported in 2016 and were confirmed positive. There were 154 satisfaction surveys* mailed and 19 were returned for a survey return rate of 12%. Key findings:

Newborn Screening Parent Satisfaction Survey					
	Very Satisfied	Satisfied	Not Satisfied		
Staff explained my baby's condition in a way I could understand.	63%	21%	16%		
Able to ask questions and discuss decisions about my baby's health care.	74%	16%	10%		
Offered reassurance and support.	79%	16%	5%		
The treatment staff was knowledgeable.	84%	16%			
My questions and concerns were addressed in a timely manner.	68%	16%	16%		
The staff provided me with useful referrals and resources.	74%	16%	10%		
Received high quality care during my appointments.	74%	21%	5%		

Reasons parents responded as not satisfied include the length of time to see a specialist, primary care providers not being knowledgeable about the abnormal result the baby had, conflicting messages among center staff, and length of time it took to have laboratory results reported to the family.

*The number of surveys (154) sent to parents does not equal the number of confirmed positives (185) due to the following reasons: some parents had moved and surveys were returned with no forwarding address, some surveys were returned after the closing date of when the survey was to be returned, and surveys were not sent to parents whose child was not diagnosed within six months of the abnormal newborn screen. Also, this survey was not sent to parents whose child has sickle cell disease. Parents whose child has sickle cell disease were sent a separate survey whose results are stated on page 23.

A satisfaction survey of parents and children receiving services provided by the hemoglobinopathy resource centers was completed in 2016. There were 1,065 surveys mailed and 340 were returned for a survey return rate of 32%. Key findings:

Hemoglobinopathy Resource Center Satisfaction Survey - Parent Response				
	Very Satisfied	Satisfied	Not Satisfied	
Treated with respect	97%	1%	2%	
Treatment staff was knowledgeable	88%	12%	0%	
Questions/concerns addressed in a timely manner	86%	13%	1%	
Staff provided useful referrals and resources	83%	15%	2%	
Provided with the services needed	97%	2%	1%	
Medical care/services received	76%	23%	1%	
Received services or treatment without experiencing any problems	97%	0%	3%	

Reasons parents responded as not satisfied with services were because of a long wait time. Parents did not indicate what a long wait time meant to them.

Appendix 12: Newborn Hearing Screening Parent Satisfaction Survey

In February 2016*, a 2015 satisfaction survey was mailed to parents of children born in Missouri who failed their initial newborn hearing screening between October 2015 and December 2015. There were 517 surveys mailed and 84 were returned for a survey return rate of 16%. The survey examined factors influencing the follow-up time between a failed newborn hearing screening and a repeat screening or an audiologic evaluation.

Key findings:

- 74% of the respondents reported that the birth hospital provided them with written information about the hearing screening prior to the hearing screening.
- 99% of the respondents reported that the birth hospital notified them of the screening result.
- 80% of the respondents reported that the hospital staff explained the importance of knowing whether a baby has a hearing loss early in life.

*Survey conducted every two years.

Missouri Department of Health and Senior Services P.O. Box 570 Jefferson City, MO 65102 www.health.mo.gov